VDMF: VANETs Detection Mechanism Using Fog Computing for Collusion and Sybil Attacks

Authors

  • Ejaz Ali Qazi Department of Computer Science, University of Peshawar, Pakistan.
  • Asif Khan Department of Computer Science, University of Peshawar, Pakistan.

Keywords:

Cyber-Attacks, VANETs, Cyber Security

Abstract

Vehicular Ad Hoc Networks (VANETs) have evolved as a key component of the intelligent transportation system, enhancing road safety and traffic efficiency. It is crucial to secure sensitive information, and detection of incident response, whenever malicious activity is observed. Key components of VANETs include vehicles, Roadside Units (RSUs), and Fog servers (FS). Despite this, the open and evolving nature of VANETs introduces substantial security challenges, including exposure to malicious attacks like Sybil and collusion attacks. The proposed technique addresses the crucial security vulnerabilities in VANETs by developing a robust and efficient fog computing-based mechanism for detecting and mitigating Sybil and collusion attacks. The proposed approach emphasizes minimizing computational and communication overheads while ensuring timely and accurate detection and response to malicious activities. The results show that the proposed technique provides less communication and computational overheads in sparse and dense scenarios with enhanced security.

References

Q. E. Ali, N. Ahmad, A. H. Malik, W. U. Rehman, A. U. Din, and G. Ali, “ASPA: Advanced Strong Pseudonym based Authentication in Intelligent Transport System,” PLoS One, vol. 14, no. 8, p. e0221213, Aug. 2019, doi: 10.1371/JOURNAL.PONE.0221213.

Deeksha, A. Kumar, and M. Bansal, “A review on VANET security attacks and their countermeasure,” 4th IEEE Int. Conf. Signal Process. Comput. Control. ISPCC 2017, vol. 2017-January, pp. 580–585, Sep. 2017, doi: 10.1109/ISPCC.2017.8269745.

J. Wu et al., “A Fog Computing Model for VANET to Reduce Latency and Delay Using 5G Network in Smart City Transportation,” Appl. Sci. 2022, Vol. 12, Page 2083, vol. 12, no. 4, p. 2083, Feb. 2022, doi: 10.3390/APP12042083.

Q. E. Ali, N. Ahmad, A. H. Malik, G. Ali, and W. ur Rehman, “Issues, Challenges, and Research Opportunities in Intelligent Transport System for Security and Privacy,” Appl. Sci. 2018, Vol. 8, Page 1964, vol. 8, no. 10, p. 1964, Oct. 2018, doi: 10.3390/APP8101964.

S. Al-Sultan, M. M. Al-Doori, A. H. Al-Bayatti, and H. Zedan, “A comprehensive survey on vehicular Ad Hoc network,” J. Netw. Comput. Appl., pp. 1–13, 2013, doi: 10.1016/j.jnca.2013.02.036.

S.-U. Rehman, M. Khan, T. Zia, and L. Zheng, “Vehicular Ad-Hoc Networks (VANETs): An Overview and Challenges,” J. Wirel. Netw. Commun., vol. 3, no. 3, pp. 29–38, 2013, doi: 10.5923/j.jwnc.20130303.02.

M. Lourenço, T. S. Gomides, F. S. H. De Souza, R. I. Meneguette, and D. L. Guidoni, “A traffic management service based on V2I communication for vehicular Ad-hoc networks,” LANC 2018 - Proc. 10th Lat. Am. Netw. Conf., pp. 25–31, Oct. 2018, doi: 10.1145/3277103.3277132.

L. Li et al., Fighting the Fog of War: Automated Incident Detection for Cloud Systems. 2021. Accessed: Oct. 07, 2024. [Online]. Available: https://www.usenix.org/conference/atc21/presentation/li-liqun

A. K. Al Hwaitat, S. Manaseer, R. M. H. Al-Sayyed, M. A. Almaiah, and O. Almomani, “AN INVESTIGATION OF DIGITAL FORENSICS FOR SHAMOON ATTACK BEHAVIOUR IN FOG COMPUTING AND THREAT INTELLIGENCE FOR INCIDENT RESPONSE,” J. Theor. Appl. Inf. Technol., vol. 15, p. 7, 2020, Accessed: Oct. 07, 2024. [Online]. Available: www.jatit.org

M. M. Hamdi, L. Audah, S. A. Rashid, and M. A. Al-Shareeda, “Techniques of early incident detection and traffic monitoring center in VANETs: A review,” J. Commun., vol. 15, no. 12, pp. 896–904, Dec. 2020, doi: 10.12720/JCM.15.12.896-904.

A. Editors et al., “A Review of Artificial Intelligence and Machine Learning for Incident Detectors in Road Transport Systems,” Math. Comput. Appl. 2022, Vol. 27, Page 77, vol. 27, no. 5, p. 77, Sep. 2022, doi: 10.3390/MCA27050077.

B. K. Dar, M. A. Shah, S. U. Islam, C. Maple, S. Mussadiq, and S. Khan, “Delay-Aware Accident Detection and Response System Using Fog Computing,” IEEE Access, vol. 7, pp. 70975–70985, 2019, doi: 10.1109/ACCESS.2019.2910862.

S. Chavhan, D. Gupta, C. Nagaraju, A. Rammohan, A. Khanna, and J. J. P. C. Rodrigues, “An Efficient Context-Aware Vehicle Incidents Route Service Management for Intelligent Transport System,” IEEE Syst. J., vol. 16, no. 1, pp. 487–498, Mar. 2022, doi: 10.1109/JSYST.2021.3066776.

P. Y. Hsiung, C. H. Li, S. H. Chang, and B. C. Cheng, “A Fog-Based Collusion Detection System,” Adv. Intell. Syst. Comput., vol. 895, pp. 514–525, 2020, doi: 10.1007/978-3-030-16946-6_41.

W. Zhang, S. Liu, Y. Liu, J. Cao, B. Fu, and Y. Du, “A Certificateless Online/Offline Aggregate Signcryption Scheme against Collusion Attacks Based on Fog Computing,” Electron. 2023, Vol. 12, Page 4747, vol. 12, no. 23, p. 4747, Nov. 2023, doi: 10.3390/ELECTRONICS12234747.

A. Borah and A. Paranjothi, “Sybil Attack Detection in VANETs using Fog Computing and Beamforming,” 2023 IEEE 14th Annu. Ubiquitous Comput. Electron. Mob. Commun. Conf. UEMCON 2023, pp. 626–631, 2023, doi: 10.1109/UEMCON59035.2023.10316102.

Y. Chen, Y. Lai, Z. Zhang, H. Li, and Y. Wang, “MDFD: A multi-source data fusion detection framework for Sybil attack detection in VANETs,” Comput. Networks, vol. 224, p. 109608, Apr. 2023, doi: 10.1016/J.COMNET.2023.109608.

“Fog Computing: Will it be the Future of Cloud Computing?” Accessed: Oct. 07, 2024. [Online]. Available: https://www.researchgate.net/publication/266477246_Fog_Computing_Will_it_be_the_Future_of_Cloud_Computing

K. A. Darabkh and B. Z. Alkhader, “Fog Computing-and Software Defined Network-Based Routing Protocol for Vehicular Ad-hoc Network,” Int. Conf. Inf. Netw., vol. 2022-January, pp. 502–506, 2022, doi: 10.1109/ICOIN53446.2022.9687147.

L. Dong, Q. Ni, W. Wu, C. Huang, T. Znati, and D. Z. Du, “A Proactive Reliable Mechanism-Based Vehicular Fog Computing Network,” IEEE Internet Things J., vol. 7, no. 12, pp. 11895–11907, Dec. 2020, doi: 10.1109/JIOT.2020.3007608.

A. Ullah, S. Yaqoob, M. Imran, and H. Ning, “Emergency Message Dissemination Schemes Based on Congestion Avoidance in VANET and Vehicular FoG Computing,” IEEE Access, vol. 7, pp. 1570–1585, 2019, doi: 10.1109/ACCESS.2018.2887075.

S. O. Ogundoyin and I. A. Kamil, “An efficient authentication scheme with strong privacy preservation for fog-assisted vehicular ad hoc networks based on blockchain and neuro-fuzzy,” Veh. Commun., vol. 31, p. 100384, Oct. 2021, doi: 10.1016/J.VEHCOM.2021.100384.

A. Paranjothi, M. Atiquzzaman, and M. S. Khan, “F-RouND: Fog-based Rogue Nodes Detection in Vehicular Ad hoc Networks,” Proc. - IEEE Glob. Commun. Conf. GLOBECOM, 2020, doi 10.1109/GLOBECOM42002.2020.9322131.

B. Al-Otaibi, N. Al-Nabhan, and Y. Tian, “Privacy-Preserving Vehicular Rogue Node Detection Scheme for Fog Computing,” Sensors 2019, Vol. 19, Page 965, vol. 19, no. 4, p. 965, Feb. 2019, doi: 10.3390/S19040965.

J. Zhang, H. Fang, H. Zhong, J. Cui, and D. He, “Blockchain-Assisted Privacy-Preserving Traffic Route Management Scheme for Fog-Based Vehicular Ad-Hoc Networks,” IEEE Trans. Netw. Serv. Manag., vol. 20, no. 3, pp. 2854–2868, Sep. 2023, doi: 10.1109/TNSM.2023.3238307.

Y. Wang, L. Xie, W. Li, W. Meng, and J. Li, “A Privacy-Preserving Framework for Collaborative Intrusion Detection Networks Through Fog Computing,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 10581 LNCS, pp. 267–279, 2017, doi: 10.1007/978-3-319-69471-9_20.

M. S. Eddine, M. A. Ferrag, O. Friha, and L. Maglaras, “EASBF: An efficient authentication scheme over blockchain for fog computing-enabled internet of vehicles,” J. Inf. Secure. Appl., vol. 59, p. 102802, Jun. 2021, doi: 10.1016/J.JISA.2021.102802.

A. Paranjothi and M. S. Khan, “Enhancing Security in VANETs with Sybil Attack Detection using Fog Computing,” IEEE Veh. Technol. Conf., 2023, doi: 10.1109/VTC2023-FALL60731.2023.10333491.

A. A. Almazroi, M. H. Alkinani, M. A. Al-Shareeda, M. A. Alqarni, A. A. Almazroey, and T. Gaber, “FC-LSR: Fog Computing-Based Lightweight Sybil Resistant Scheme in 5G-Enabled Vehicular Networks,” IEEE Access, vol. 12, pp. 30101–30112, 2024, doi: 10.1109/ACCESS.2024.3368393.

S. Benadla, O. R. Merad-Boudia, S. M. Senouci, and M. Lehsaini, “Detecting Sybil Attacks in Vehicular Fog Networks Using RSSI and Blockchain,” IEEE Trans. Netw. Serv. Manag., vol. 19, no. 4, pp. 3919–3935, Dec. 2022, doi: 10.1109/TNSM.2022.3216073.

J. Grover, M. S. Gaur, and V. Laxmi, “A novel defense mechanism against Sybil attacks in VANET,” SIN’10 - Proc. 3rd Int. Conf. Secure. Inf. Networks, pp. 249–255, 2010, doi: 10.1145/1854099.1854150.

M. Khalil and M. A. Azer, “Sybil attack prevention through identity symmetric scheme in vehicular ad-hoc networks,” IFIP Wirel. Days, vol. 2018-April, pp. 184–186, May 2018, doi: 10.1109/WD.2018.8361717.

Y. Hao, J. Tang, and Y. Cheng, “Cooperative sybil attack detection for position based applications in privacy preserved VANETs,” GLOBECOM - IEEE Glob. Telecommun. Conf., 2011, doi 10.1109/GLOCOM.2011.6134242.

Q. Yaseen, M. Aldwairi, Y. Jararweh, M. Al-Ayyoub, and B. Gupta, “Collusion attacks mitigation in the internet of things: a fog based model,” Multimed. Tools Appl., vol. 77, no. 14, pp. 18249–18268, Jul. 2018, doi: 10.1007/S11042-017-5288-3/METRICS.

M. Cui, D. Han, and J. Wang, “An Efficient and Safe Road Condition Monitoring Authentication Scheme Based on Fog Computing,” IEEE Internet Things J., vol. 6, no. 5, pp. 9076–9084, Oct. 2019, doi: 10.1109/JIOT.2019.2927497.

O. Akbarzadeh, M. R. Khosravi, and L. T. Alex, “Design and Matlab Simulation of Persian License Plate Recognition Using Neural Network and Image Filtering for Intelligent Transportation Systems,” ASP Trans. Pattern Recognit. Intell. Syst., vol. 2, no. 1, pp. 1–14, Feb. 2022, doi: 10.52810/TPRIS.2021.100098.

Downloads

Published

2024-09-30

How to Cite

Qazi, E. A., & Asif Khan. (2024). VDMF: VANETs Detection Mechanism Using Fog Computing for Collusion and Sybil Attacks. International Journal of Innovations in Science & Technology, 6(3), 1554–1567. Retrieved from https://journal.50sea.com/index.php/IJIST/article/view/1041