Artificial Intelligence-Based Approach for The Recommendations of Mango Supply Chain

Authors

  • Hamza Hussain Muhammad Nawaz Shareef University of Agriculture, Multan https://orcid.org/0009-0005-2306-5338
  • Hira Nazir Department of CyberSecurity, Emerson University, Multan
  • Muhammad SamiUllah Higher Education Department, Govt Graduate College of Commerce, Multan.
  • Muhammad Danial Faiz Department of Mathematics, Institute of Southern Punjab Multan
  • Muhammad Adnan Faiz Department of Business and public administration, Emerson University Multan,6400, Pakistan
  • Adnan Manzoor Department of Business and public administration, Emerson University Multan,6400, Pakistan

Keywords:

Artificial Intelligence (AI), Mango, Supply Chain Optimization, Agricultural Predictive Modeling

Abstract

This study utilizes a comprehensive dataset that encompasses variables reflecting temperature, humidity, precipitation, inventory levels, transportation modes, freshness scores, and ripeness scores. Compiled from various mango farms across different markets, this dataset provides a robust foundation for our analysis. To develop predictive models, we employed several machine learning algorithms, including Support Vector Machines (SVM), K-Nearest Neighbors (KNN), Random Forests (RF), and Decision Trees (DT). We divided the dataset into training and testing sets, using an 80-20 split for training and testing subsets, respectively. Model performance was evaluated using metrics such as accuracy, precision, recall, and F1 score. Our results indicate that Random Forests outperformed other models, achieving the highest accuracy, precision, recall, and F1 scores. A feature importance analysis revealed specific features that contributed significantly to the performance improvements of the model. These insights into feature importance can aid in refining the model's performance, making feature importance analysis a valuable component of model evaluation.

References

A. B. S. Bewketu Takele Wondifraw, Mesele Yihune Tamene, “Assessment of crop damage by rodent pests from experimental barley crop fields in Farta District, South Gondar, Ethiopia,” PLoS One, vol. 16, no. 8, p. 0255372., 2021, doi: 10.1371/journal.pone.0255372.

E. D. Erute, Folasade O. Isinkaye, “A Smartphone-based Plant Disease Detection and Treatment Recommendation System using Machine Learning Techniques,” Trans. Mach. Learn. Artif. Intell., vol. 10, no. 1, pp. 1–8, 2022, doi: 10.14738/tmlai.101.11313.

Y. P. Akriti Taneja, Gayathri Nair, Manisha Joshi, Somesh Sharma, Surabhi Sharma, Anet Režek Jambrak, Elena Roselló-Soto, Francisco J. Barba, Juan Manuel Castagnini, Noppol Leksawasdi, “Artificial Intelligence: Implications for the Agri-Food Sector,” Agronomy, vol. 13, no. 5, p. 1397, 2023, doi: 10.3390/agronomy13051397.

S. Bondre, D. A., & Mahagaonkar, “PREDICTION OF CROP YIELD AND FERTILIZER RECOMMENDATION USING MACHINE LEARNING ALGORITHMS,” Int. J. Eng. Appl. Sci. Technol., vol. 4, no. 5, pp. 371–376, 2019, [Online]. Available: https://ijeast.com/papers/371-376,Tesma405,IJEAST.pdf

T. N. P. Truong Dang Le, Thanh Viet Nguyen, Nguyen Van Muoi, Ha Thanh Toan, Nguyen Mai Lan, “Supply Chain Management of Mango (Mangifera indica L.) Fruit: A Review With a Focus on Product Quality During Postharvest,” Front. Sustain. Food Syst., vol. 5, 2022, doi: https://doi.org/10.3389/fsufs.2021.799431.

A. Gupta, A., Nagda, D., Nikhare, P., & Sandbhor, “Smart Crop Prediction Using IoT and Machine Learning,” Int. J. Eng. Res. Technol., vol. 9, no. 3, pp. 18–21, 2021, [Online]. Available: https://www.ijert.org/research/smart-crop-prediction-using-iot-and-machine-learning-IJERTCONV9IS03005.pdf

I. B. J. Dela Cruz, “Machine Learning-Based Classification of Mango Pulp Weevil Activity Utilizing an Acoustic Sensor,” Micromachines, vol. 14, no. 11, p. 1979, 2023, doi: 10.3390/mi14111979.

T.-N. and D.-N. L.-T. Doan, “A Novel Mango Grading System Based on Image Processing and Machine Learning Methods,” Int. J. Adv. Comput. Sci. Appl., vol. 14, no. 5, pp. 1118–1129, 2023, [Online]. Available: https://thesai.org/Downloads/Volume14No5/Paper_115-A_Novel_Mango_Grading_System_Based_on_Image_Processing.pdf

P. D. & B. R. Jayita Dutta, “AI-based soft-sensor for shelf life prediction of ‘Kesar’ mango,” SN Appl. Sci., vol. 3, no. 6, p. 657, 2021, doi: 10.1007/s42452-021-04657-7.

Y. G. Rahini Mahendran , Rongbin Xu , Shanshan Li, “Interpersonal violence associated with hot weather,” Lancet Planet Heal., vol. 5, no. 9, pp. 571–572, 2021, doi: 10.1016/S2542-5196(21)00210-2.

S. Vishnu, “STEERING INNOVATION IN AGRICULTURE: THE DUTCH WAY,” Agric. Ext. South Asia, 2022, [Online]. Available: https://www.researchgate.net/publication/363082449_STEERING_INNOVATION_IN_AGRICULTURE_THE_DUTCH_WAY

V. K. T. and A. K. S. Saini, R. V., P. Vaid, N.K. Saini, S.S. Siwal, V.K. Gupta, “Recent Advancements in the Technologies Detecting Food Spoiling Agents,” J. Funct. Biomater., vol. 12, no. 4, p. 67, 2021, doi: 10.3390/jfb12040067.

M. R. and A. H. G. Nithya, R., B. Santhi, R. Manikandan, “Computer Vision System for Mango Fruit Defect Detection Using Deep Convolutional Neural Network,” Foods, vol. 11, no. 21, 2022, doi: 10.3390/foods11213483.

A. D. and A. S. Rajpoot, V., R. Dubey, P.K. Mannepalli, P. Kalyani, S. Maheshwari, “Mango Plant Disease Detection System Using Hybrid BBHE and CNN Approach,” Trait. du signal, vol. 39, no. 3, pp. 1071–1078, 2022, doi: 10.18280/ts.390334.

S.-I. C. & W.-F. Chen, “The Optimal Harvest Decisions for Natural and Artificial Maturation Mangoes under Uncertain Demand, Yields and Prices,” Sustainability, vol. 13, no. 17, pp. 1–17, 2021, [Online]. Available: https://ideas.repec.org/a/gam/jsusta/v13y2021i17p9660-d623563.html#author-abstract

P. C. and R. M. R. Defraeye, T., C. Shrivastava, T. Berry, P. Verboven, D. Onwude, S. Schudel, A. Bühlmann, “Digital twins are coming: Will we need them in supply chains of fresh horticultural produce?,” Trends Food Sci. Technol., vol. 109, pp. 245–258, 2021, doi: https://doi.org/10.1016/j.tifs.2021.01.025.

S. J. and P. Jaidka, “Mango Leaf disease Classification using deep learning Hybrid Model,” Int. Conf. Power, Instrumentation, Energy Control (PIECON), Aligarh, India, pp. 1–6, 2023, doi: 10.1109/PIECON56912.2023.10085869.

S. S. & G. P. R. Rohan Sharma, Kartik Suvarna, “Detecting Diseases in Mango Leaves Using Convolutional Neural Networks,” Int. Conf. Innov. Comput. Commun., pp. 183–192, 2021, doi: https://doi.org/10.1007/978-981-16-2594-7_15.

C. Q. Yingfeng Zhang, Lin Zhao, “Modeling of an IoT-enabled supply chain for perishable food with two-echelon supply hubs,” Ind. Manag. Data Syst., vol. 17, pp. 1890–1905, 2017, [Online]. Available: https://www.semanticscholar.org/paper/Modeling-of-an-IoT-enabled-supply-chain-for-food-Zhang-Zhao/df7dee76df5a63612c876990f28b1b9d1b47e56c

A. J. M. B. and A. R. Verdouw, C.N., J. Wolfert, “Virtualization of food supply chains with the internet of things,” J. Food Eng., vol. 176, pp. 128–136, 2016, doi: https://doi.org/10.1016/j.jfoodeng.2015.11.009.

D. . Vermani, “Farm to Fork: IOT for Food Supply Chain,” Int. J. Innov. Technol. Explor. Eng., vol. 8, no. 12, pp. 4915–4919, 2019, doi: 10.35940/ijitee.L3551.1081219.

Y. M. Ubonrat Siripatrawan, “Hyperspectral imaging coupled with machine learning for classification of anthracnose infection on mango fruit,” Spectrochim. Acta Part A Mol. Biomol. Spectrosc., vol. 309, p. 123825, 2024, doi: https://www.sciencedirect.com/science/article/abs/pii/S138614252301510X.

A. K. N. Jayashri N, Veeresh Rampur, Durgaprasad Gangodkar, Abirami M, Balarengadurai C, “Improved block chain system for high secured IoT integrated supply chain,” Meas. Sensors, vol. 25, p. 100633, 2023, doi: https://doi.org/10.1016/j.measen.2022.100633.

S. D. Suveena Jantapirak, Onrawee Laguerre, Alain Denis, Yvanne Paviet Salomon, Denis Flick, Kanithaporn Vangnai, Weerachet Jittanit, “Experimental simulation of temperature non-uniformity in a loaded container along air cargo supply chain: Mango case study,” J. Food Eng., vol. 380, p. 112161, 2024, doi: https://doi.org/10.1016/j.jfoodeng.2024.112161.

J. A. ROSE Githumbi, JOHN Mburu, ACKELLO Ogutu, “Assessment of factors influencing adoption of postharvest loss reduction practices along the mango value chain in Embu, Machakos, and Nairobi counties, Kenya,” Heliyon, vol. 10, no. 4, p. 25146, 2024, doi: https://doi.org/10.1016/j.heliyon.2024.e25146.

and I. A. B. Ayesha Hakim, Sundus Shafique, Mubashir Mehdi, “FARMER TO CONSUMER – AN ONLINE SUPPLY CHAIN PROCESS SYSTEM USING BLOCKCHAIN TECHNOLOGY,” Agric. Sci. J., vol. 6, no. 1, pp. 1–11, 2024.

A. H. Iqbal, Hafiz Muhammad Rizwan, “Mango Variety and Grading Dataset,” Mendeley Data, 2021, doi: 10.17632/5mc3s86982.1.

S. N. & N. Anand, “Wholesalers perspectives on mango supply chain efficiency in India,” J. Agribus. Dev. Emerg. Econ., vol. 9, no. 2, pp. 175–200, 2019, doi: 10.1108/JADEE-02-2018-0032.

A. Ballo, A.B., Diaby, M. and Coulibaly, “An Application of Machine Learning Methods to Detect Mango Varieties,” Open J. Appl. Sci., vol. 14, pp. 1666–1690, 2024, doi: 10.4236/ojapps.2024.147109.

& S. H. W. Hardyansyah, B., Heru Sukoco, “Monitoring and Controlling System for Mango Logistics Based on Machine Learning,” Inf. Syst. Eng. Artic., vol. 8, no. 1, 2024, doi: https://doi.org/10.29207/resti.v8i1.5226.

Downloads

Published

2024-11-21

How to Cite

Hamza Hussain, Hira Nazir, Muhammad SamiUllah, Muhammad Danial Faiz, Muhammad Adnan Faiz, & Adnan Manzoor. (2024). Artificial Intelligence-Based Approach for The Recommendations of Mango Supply Chain. International Journal of Innovations in Science & Technology, 6(4), 1913–1931. Retrieved from https://journal.50sea.com/index.php/IJIST/article/view/1116