Signal Processing Approach to Detect Non-Metallic Targets for Through Wall Imaging Using UWB Antenna

Authors

  • Sajjad Ahmed Bhatti Department of Computer Science, The University of Larkano, (TUL), Larkana, Sindh, Pakistan
  • Fawad Salam Khan Department of Creative Technologies, Faculty of Computing and AI, Air University Islamabad, Pakistan
  • Imran Khan Keerio Departement of Computer Science, Sindh Madressatul Islam University, Karachi Pakistan
  • Arslan Ahmed Faculty of Electrical and Electronic Engineering, Universiti Tun Hussein Onn Malaysia (UTHM), Johor, Malaysia
  • Sarfraz Ahmed Department of Telecommunication Engineering, Quaid-e-Awam University of Engineering, Science and Technology (QUEST) Nawabshah, Pakistan

Keywords:

Signal Processing, Through-Wall Imaging, Non-Metallic Targets, Time Domain, UWB, CST, AVA

Abstract

This paper presents a signal-processing approach aimed at detecting non-metallic targets through walls using an Ultra-Wideband (UWB) antenna configuration. Through-wall imaging holds significant importance in various fields including security, surveillance,and search and rescue operations. The proposed methodology involves the utilization of the UWB Antipodal Vivaldi antenna, known for its wide bandwidth and high-resolution imaging capabilities. The study focuses on the detection of non-metallic targets using signal processing techniques. A through-wall simulation model utilizing a UWB Antipodal Vivaldi Antenna has been developed in CST Microwave Studio. This model generates received signals in the time domain for through-wall target detection, which are subsequently processed using signal processing techniques to produce 2D images.

References

D. S. S. Kaushal, B. Kumar, P. Sharma, “Real time Adaptive Approach for Hidden Targets Shape Identification using through Wall Imaging System,” Def. Sci. J., vol. 71, no. 3, pp. 395–402, 2021, doi: 10.14429/dsj.71.16696.

R. Cicchetti et al., “A Microwave Imaging System for the Detection of Targets Hidden behind Dielectric Walls,” 2020 33rd Gen. Assem. Sci. Symp. Int. Union Radio Sci. URSI GASS 2020, Aug. 2020, doi: 10.23919/URSIGASS49373.2020.9232008.

H. Li, G. Cui, L. Kong, S. Guo, and M. Wang, “Scale-Adaptive Human Target Tracking for Through-Wall Imaging Radar,” IEEE Geosci. Remote Sens. Lett., vol. 17, no. 8, pp. 1348–1352, Aug. 2020, doi: 10.1109/LGRS.2019.2948629.

K. S. Banavathu Kondalu, Singam Aruna, Naik, “Conformal Lower Edge Corner Defected CPW-fed Elliptical Ring Shaped Antenna for UWB Applications,” Int. J. Microw. Opt. Technol., vol. 17, no. 3, pp. 276–284, 2022, [Online]. Available: https://www.researchgate.net/publication/362131083_Conformal_Lower_Edge_Corner_Defected_CPW-fed_Elliptical_Ring_Shaped_Antenna_for_UWB_Applications

and A. Z. N. Alsawaftah, S. El-Abed, S. Dhou, “Microwave Imaging for Early Breast Cancer Detection: Current State, Challenges, and Future Directions,” J. Imaging, vol. 8, no. 5, p. 123, 2022, doi: https://doi.org/10.3390/jimaging8050123.

A. M. Abbosh, M. E. Bialkowski, M. V. Jacob, and J. Mazierska, “Design of a compact ultra-wideband antenna,” Microw. Opt. Technol. Lett., vol. 48, no. 8, pp. 1515–1518, Aug. 2006, doi: 10.1002/MOP.21705.

A. J. P. W. van Verre, F. J. W. Podd, X. Gao, D. J. Daniels, “A Review of Passive and Active Ultra-Wideband Baluns for Use in Ground Penetrating Radar,” Remote Sens, vol. 13, no. 10, p. 1899, 2021, doi: https://doi.org/10.3390/rs13101899.

A. M. De Oliveira et al., “A Fern Antipodal Vivaldi Antenna for Near-Field Microwave Imaging Medical Applications,” IEEE Trans. Antennas Propag., vol. 69, no. 12, pp. 8816–8829, Dec. 2021, doi: 10.1109/TAP.2021.3096942.

V. S. Bhadouria, Z. Akhter, M. J. Akhtar, and P. Munshi, “Automated microwave monitoring of hidden objects for strategic and security applications,” J. Electromagn. Waves Appl., vol. 35, no. 18, pp. 2492–2509, Dec. 2021, doi: 10.1080/09205071.2021.1953404.

Y. Rai, S. Gotra, B. Kumar, S. Agarwal, and D. Singh, “A Compact Ultrawideband Antipodal Vivaldi Antenna and Its Efficacy in Through-Wall Imaging,” Sens. Imaging, vol. 25, no. 1, pp. 1–17, Dec. 2024, doi: 10.1007/S11220-024-00461-W/METRICS.

J. Wang, J. Liu, K. Hou, and Y. Li, “A novel antipodal Vivaldi antenna for ultra-wideband far-field detection,” AEU - Int. J. Electron. Commun., vol. 164, p. 154626, May 2023, doi: 10.1016/J.AEUE.2023.154626.

K. P. R. K. Raha, “Through Wall Imaging Radar Antenna with a Focus on Opening New Research Avenues,” Def. Sci. J., vol. 71, no. 5, pp. 670–681, 2021, doi: 10.14429/dsj.71.16592.

M. S. S. Sajjad Ahmed, Ariffuddin Joret, Norshidah Katiran, Muhammad Faiz Liew Abdullah, Zahriladha Zakaria, “Ultra-wide band antipodal Vivaldi antenna design using target detection algorithm for detection application,” Bull. Electr. Eng. Informatics, vol. 12, no. 4, pp. 2165–2172, 2023, doi: https://doi.org/10.11591/eei.v12i4.5081.

J. G. Vera-Dimas, M. Tecpoyotl-Torres, V. Grimalsky, S. V. Koshevaya, and M. Torres-Cisneros, “Analysis of equivalent antennas in RT duroid 5880 and 5870 for GPS operation frequency,” Proc. - 2010 IEEE Electron. Robot. Automot. Mech. Conf. CERMA 2010, pp. 754–758, 2010, doi: 10.1109/CERMA.2010.133.

H. C. Ba, H. Shirai, and C. D. Ngoc, “Analysis and design of antipodal Vivaldi antenna for UWB applications,” 2014 IEEE 5th Int. Conf. Commun. Electron. IEEE ICCE 2014, pp. 391–394, Oct. 2014, doi: 10.1109/CCE.2014.6916735.

K. Aravinda Reddy, S. Natarajamani, and S. K. Behera, “Antipodal vivaldi antenna UWB antenna with 5.5GHz band-notch characteristics,” 2012 Int. Conf. Comput. Electron. Electr. Technol. ICCEET 2012, pp. 821–824, 2012, doi: 10.1109/ICCEET.2012.6203866.

A. S. D. and S. Kumar, “A Survey of Performance Enhancement Techniques of Antipodal Vivaldi Antenna,” IEEE Access, vol. 8, pp. 45774–45796, 2020, doi: 10.1109/ACCESS.2020.2977167.

C. R. P. Dionisio, S. Tavares, M. Perotoni, and S. Kofuji, “Experiments on through-wall imaging using ultra wideband radar,” Microw. Opt. Technol. Lett., vol. 54, no. 2, pp. 339–344, Feb. 2012, doi: 10.1002/MOP.26543.

O. T. Stefano Pisa, Renato Cicchetti, Emanuele Piuzzi, “A Comparison between Multiple-Input Multiple-Output and Multiple-Input Single-Output Radar Configurations for Through-the-Wall Imaging Applications,” Int. J. Antennas Propag, 2022, doi: https://doi.org/10.1155/2022/3887314.

Y. Wang, Y. Yang, and A. E. Fathy, “Ultra-wideband vivaldi arrays for see-through-wall imaging radar applications,” IEEE Antennas Propag. Soc. AP-S Int. Symp., 2009, doi: 10.1109/APS.2009.5172292.

M. J. N. R Chandra, Abhay N Gaikwad, Dharmendra Singh, “An approach to remove the clutter and detect the target for ultra-wideband through-wall imaging,” J. Geophys. Eng., vol. 5, no. 4, pp. 412–419, 2008, doi: https://doi.org/10.1088/1742-2132/5/4/005.

Downloads

Published

2024-12-26

How to Cite

Bhatti, S. A., Fawad Salam Khan, Imran Khan Keerio, Arslan Ahmed, & Sarfraz Ahmed. (2024). Signal Processing Approach to Detect Non-Metallic Targets for Through Wall Imaging Using UWB Antenna. International Journal of Innovations in Science & Technology, 6(4), 2195–2208. Retrieved from https://journal.50sea.com/index.php/IJIST/article/view/1141