Delving into the Practices Involved in the Creation and Dissemination of Misinformation
Keywords:
Fake News, Misinformation, Feature Extraction, NLP, EnsemblingAbstract
This study investigates the authenticity of news with specific training features validating the same with specific machine-learning techniques. The contents of fake news are created to make credible information that would create mass opinions and provide a strong basis to convince the readers or confuse them utterly. The fake information is usually disseminated using numerous automated algorithms. Therefore, it is very quintessential to identify the sources and authenticity of such information. With recent advancements in information communication technology, there exists a cluster of deep knowledge from which a user intends to retrieve relevant information such as news articles. For data mining and classification tasks such as fake news classification, the approach of machine learning can be employed for effective experimentation. To address the raised issues in this study, a comprehensive and diversified dataset was required that must contain relevant knowledge with sentiment tags such as authentic and fake news. To fulfill the same, a corpus comprising over 44k authentic and fake news items is collected. Moreover, this study emphasizes news classification as fake or authentic using data mining and analytics.
References
S. A.-H. Fadia Shah, Aamir Anwar, Ijaz ul haq, Hussain AlSalman, Saddam Hussain, “Artificial Intelligence as a Service for Immoral Content Detection and Eradication,” Sci. Program., vol. 1, no. 1, 2022, doi: https://doi.org/10.1155/2022/6825228.
C. Buntain and J. Golbeck, “Automatically Identifying Fake News in Popular Twitter Threads,” Proc. - 2nd IEEE Int. Conf. Smart Cloud, SmartCloud 2017, pp. 208–215, Nov. 2017, doi: 10.1109/SMARTCLOUD.2017.40.
M. Alazab et al., “A Hybrid Wrapper-Filter Approach for Malware Detection,” J. Networks, vol. 9, no. 11, Dec. 1969, doi: 10.4304/JNW.9.11.2878-2891.
“Stanford study examines fake news and the 2016 presidential election | Stanford Report.” Accessed: Feb. 22, 2025. [Online]. Available: https://news.stanford.edu/stories/2017/01/stanford-study-examines-fake-news-2016-presidential-election
X. Zhou and R. Zafarani, “A Survey of Fake News,” ACM Comput. Surv., vol. 53, no. 5, Sep. 2020, doi: 10.1145/3395046.
Ashish Gupta, Han Li, Wenting Jiang, “Understanding patterns of COVID infodemic: A systematic and pragmatic approach to curb fake news,” J. Bus. Res., vol. 140, pp. 670–683, 2022, doi: https://doi.org/10.1016/j.jbusres.2021.11.032.
Y. Cheng, K. Chen, H. Sun, Y. Zhang, and F. Tao, “Data and knowledge mining with big data towards smart production,” J. Ind. Inf. Integr., vol. 9, pp. 1–13, Mar. 2018, doi: 10.1016/J.JII.2017.08.001.
R. R. Mandical, N. Mamatha, N. Shivakumar, R. Monica, and A. N. Krishna, “Identification of Fake News Using Machine Learning,” Proc. CONECCT 2020 - 6th IEEE Int. Conf. Electron. Comput. Commun. Technol., Jul. 2020, doi: 10.1109/CONECCT50063.2020.9198610.
S. S. U. Muhammad Mazhar Bukhari, Bader Fahad Alkhamees, Saddam Hussain, Abdu Gumaei, Adel Assiri, “An Improved Artificial Neural Network Model for Effective Diabetes Prediction,” Complexity, 2021, doi: https://doi.org/10.1155/2021/5525271.
S. S. U. Faiza Shah, Yumin Liu, Aamir Anwar, Yasir Shah, Roobaea Alroobaea, Saddam Hussain, “Machine Learning: The Backbone of Intelligent Trade Credit-Based Systems,” Secur. Commun. Networks, 2022, doi: https://doi.org/10.1155/2022/7149902.
N. X. Nyow and H. N. Chua, “Detecting Fake News with Tweets’ Properties,” 2019 IEEE Conf. Appl. Inf. Netw. Secur. AINS 2019, pp. 24–29, Nov. 2019, doi: 10.1109/AINS47559.2019.8968706.
P. H. A. Faustini and T. F. Covões, “Fake news detection in multiple platforms and languages,” Expert Syst. Appl., vol. 158, p. 113503, Nov. 2020, doi: 10.1016/J.ESWA.2020.113503.
M. Del Vicario, W. Quattrociocchi, A. Scala, and F. Zollo, “Polarization and fake news: early warning of potential misinformation targets,” ACM Trans Web, vol. 13, no. 2, pp. 1–22, Apr. 2019, doi: 10.1145/3316809.
Y. Liu and Y. F. B. Wu, “FNED,” ACM Trans. Inf. Syst., vol. 38, no. 3, May 2020, doi: 10.1145/3386253.
J. C. S. Reis, A. Correia, F. Murai, A. Veloso, F. Benevenuto, and E. Cambria, “Supervised Learning for Fake News Detection,” IEEE Intell. Syst., vol. 34, no. 2, pp. 76–81, Mar. 2019, doi: 10.1109/MIS.2019.2899143.
M. Z. Asghar, A. Habib, A. Habib, A. Khan, R. Ali, and A. Khattak, “Exploring deep neural networks for rumor detection,” J. Ambient Intell. Humaniz. Comput., vol. 12, no. 4, pp. 4315–4333, Apr. 2021, doi: 10.1007/S12652-019-01527-4/METRICS.
G. Raja, Y. Manaswini, G. D. Vivekanandan, H. Sampath, K. Dev, and A. K. Bashir, “AI-Powered blockchain - A decentralized secure multiparty computation protocol for IoV,” IEEE INFOCOM 2020 - IEEE Conf. Comput. Commun. Work. INFOCOM WKSHPS 2020, pp. 865–870, Jul. 2020, doi: 10.1109/INFOCOMWKSHPS50562.2020.9162866.
S. S. Zehra, R. Qureshi, K. Dev, S. Shahid, and N. A. Bhatti, “Comparative Analysis of Bio-Inspired Algorithms for Underwater Wireless Sensor Networks,” Wirel. Pers. Commun., vol. 116, no. 2, pp. 1311–1323, Jan. 2021, doi: 10.1007/S11277-020-07418-8/METRICS.
R. K. Kaliyar, A. Goswami, and P. Narang, “DeepFakE: improving fake news detection using tensor decomposition-based deep neural network,” J. Supercomput., vol. 77, no. 2, pp. 1015–1037, Feb. 2021, doi: 10.1007/S11227-020-03294-Y/METRICS.
M. H. Goldani, S. Momtazi, and R. Safabakhsh, “Detecting fake news with capsule neural networks,” Appl. Soft Comput., vol. 101, p. 106991, Mar. 2021, doi: 10.1016/J.ASOC.2020.106991.
B. Tejaswini, V., “Depression Detection from Social Media Text Analysis using Natural Language Processing Techniques and Hybrid Deep Learning Model.,” ACM Trans. Asian Low-Resource Lang. Inf. Process., pp. 1–20, 2024.
P. Sajda, “Machine learning for detection and diagnosis of disease,” Annu. Rev. Biomed. Eng., vol. 8, pp. 537–565, 2006, doi: 10.1146/ANNUREV.BIOENG.8.061505.095802.
S. S. U. Ch. Anwar ul Hassan, Jawaid Iqbal, Saddam Hussain, Hussain AlSalman, Mogeeb A. A. Mosleh, “A Computational Intelligence Approach for Predicting Medical Insurance Cost,” Math. Probl. Eng., 2021, doi: https://doi.org/10.1155/2021/1162553.
A. Jain and A. Kasbe, “Fake News Detection,” 2018 IEEE Int. Students’ Conf. Electr. Electron. Comput. Sci. SCEECS 2018, Nov. 2018, doi: 10.1109/SCEECS.2018.8546944.
A. Yadav and D. K. Vishwakarma, “Sentiment analysis using deep learning architectures: a review,” Artif. Intell. Rev., vol. 53, no. 6, pp. 4335–4385, Aug. 2020, doi: 10.1007/S10462-019-09794-5/METRICS.
H. Ahmed, I. Traore, and S. Saad, “Detecting opinion spams and fake news using text classification,” Secur. Priv., vol. 1, no. 1, p. e9, Jan. 2018, doi: 10.1002/SPY2.9.
H. Ahmed, I. Traore, and S. Saad, “Detection of Online Fake News Using N-Gram Analysis and Machine Learning Techniques,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 10618 LNCS, pp. 127–138, 2017, doi: 10.1007/978-3-319-69155-8_9.
A. Oussous, A. A. Lahcen, and S. Belfkih, “Impact of text pre-processing and ensemble learning on Arabic sentiment analysis,” ACM Int. Conf. Proceeding Ser., vol. Part F148154, 2019, doi: 10.1145/3320326.3320399.
“Stopwords in Technical Language Processing.” Accessed: Feb. 22, 2025. [Online]. Available: https://www.researchgate.net/publication/341926808_Stopwords_in_Technical_Language_Processing
F. Harrag, E. El-Qawasmah, and A. M. S. Al-Salman, “Stemming as a feature reduction technique for Arabic text categorization,” Proc. 10th Int. Symp. Program. Syst. ISPS’ 2011, pp. 128–133, 2011, doi: 10.1109/ISPS.2011.5898874.
M. Bounabi, K. El Moutaouakil, and K. Satori, “A comparison of text classification methods using different stemming techniques,” Int. J. Comput. Appl. Technol., vol. 60, no. 4, pp. 298–306, 2019, doi: 10.1504/IJCAT.2019.101171.
A. M. A. Bahzad Taha Jijo, “Classification Based on Decision Tree Algorithm for Machine Learning,” J. Appl. Sci. Technol. Trends, vol. 2, no. 1, pp. 20–28, 2021, doi: 10.38094/jastt20165.
A. B. Shaik and S. Srinivasan, “A brief survey on random forest ensembles in classification model,” Lect. Notes Networks Syst., vol. 56, pp. 253–260, 2019, doi: 10.1007/978-981-13-2354-6_27.
N. Wahid, A. Zaidi, G. Dhiman, M. Manwal, D. Soni, and R. R. Maaliw, “Identification of Coronary Artery Disease using Extra Tree Classification,” 6th Int. Conf. Inven. Comput. Technol. ICICT 2023 - Proc., pp. 787–792, 2023, doi: 10.1109/ICICT57646.2023.10134338.
X. Dong, Z. Yu, W. Cao, Y. Shi, and Q. Ma, “A survey on ensemble learning,” Front. Comput. Sci., vol. 14, no. 2, pp. 241–258, Apr. 2020, doi: 10.1007/S11704-019-8208-Z/METRICS.
A. Vereshchaka, S. Cosimini, and W. Dong, “Analyzing and distinguishing fake and real news to mitigate the problem of disinformation,” Comput. Math. Organ. Theory, vol. 26, no. 3, pp. 350–364, Sep. 2020, doi: 10.1007/S10588-020-09307-8/METRICS.

Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 50SEA

This work is licensed under a Creative Commons Attribution 4.0 International License.