Effects of Exogenous Calcium and Magnesium on Physio-Hormonal Attributes of Trigonella Foenum-Graecum l. Under Polyethylene Glycol (Peg) Induce Drought Stress
Keywords:
Stress, Physio-Hormonal Attributes, Calcium, Magnesium, Poly Ethylene GlycolAbstract
Drought stress is one of the abiotic stresses that adversely affect the plant growth parameters and physio-hormonal attributes. In the current work, we study the adverse effects of induced PEG drought stress in Trigonella foenum-graecum L. in the presence of calcium and magnesium concentration. The experiment was conducted in the botanical garden of Abdul Wali Khan University Mardan in a completely random design. There are eight treatments and one control having each of the trees replicated. The nutrients of calcium and magnesium ratio (4, 2, and 0.18) were added to the plant after 30 days adding the polyethylene glycol of concentration of (0.6 Mpa and 0.2 MPa) for 8 days. The results show that drought stress induced by PEG had a significant effect on the growth and physio-hormonal indices of the plant. It was found that calcium and magnesium both reduce the adverse effects of polyethylene glycol. All treatments helped ascorbic acid, salicylic acid, and auxins to give plant possible growth and development in due time reducing the effects of PEG. Similarly, in enzymatic activities, the maximum lipid peroxidase contents at p >0.05 are found in calcium and magnesium ratio 0.18 and polyethylene glycol 0.2 Mpa. The maximum ascorbic acid peroxidase was found at p>0.05 in Ca/Mg ratio 4. It is concluded from the study that the calcium and magnesium ratio mitigated the adverse effects of polyethylene glycol on Trigonella foenum-graecum L. growth by promoting hormones and enzymatic activities under PEG-induced drought stress.
References
P. H. Ester Anon, Xavier Serra-Picamal, “Cell crawling mediates collective cell migration to close undamaged epithelial gaps,” Proc. Natl. Acad. Sci., vol. 109, no. 27, pp. 10891–10896, 2012, doi: https://doi.org/10.1073/pnas.1117814109.
N. Ashraf, D. Karlan, and W. Yin, “Tying Odysseus to the Mast: Evidence From a Commitment Savings Product in the Philippines,” Q. J. Econ., vol. 121, no. 2, pp. 635–672, May 2006, doi: 10.1162/QJEC.2006.121.2.635.
A. Y. I. Cakmak, “Magnesium: A forgotten element in crop production,” Better crops. Accessed: Mar. 02, 2025. [Online]. Available: https://www.researchgate.net/publication/291869977_Magnesium_A_forgotten_element_in_crop_production
A. S. Chandio, T. S. Lee, and M. S. Mirjat, “The extent of waterlogging in the lower Indus Basin (Pakistan) – A modeling study of groundwater levels,” J. Hydrol., vol. 426–427, pp. 103–111, Mar. 2012, doi: 10.1016/J.JHYDROL.2012.01.017.
K. Foster, H. Lambers, D. Real, P. Ramankutty, G. R. Cawthray, and M. H. Ryan, “Drought resistance and recovery in mature Bituminaria bituminosa var. albomarginata,” Ann. Appl. Biol., vol. 166, no. 1, pp. 154–169, Jan. 2015, doi: 10.1111/AAB.12171.
G. N. CHRISTINE H. FOYER, “Oxidant and antioxidant signalling in plants: a re-evaluation of the concept of oxidative stress in a physiological context,” Plant. Cell Environ., 2005, doi: https://doi.org/10.1111/j.1365-3040.2005.01327.x.
A. G. H. Führs, “Magnesium mobility in soils as a challenge for soil and plant analysis, magnesium fertilization and root uptake under adverse growth conditions,” Plant Soil, vol. 368, pp. 5–21, 2013, doi: https://doi.org/10.1007/s11104-012-1567-y.
W. Grzebisz, “Crop response to magnesium fertilization as affected by nitrogen supply,” Plant Soil, vol. 368, no. 1–2, pp. 23–39, Jul. 2013, doi: 10.1007/S11104-012-1574-Z/METRICS.
K. C. Wanli Guo, Shaoning Chen, Nazim Hussain, Yuexi Cong, Zongsuo Liang, “Magnesium stress signaling in plant: Just a beginning,” Plant Signal. Behav., vol. 10, no. 3, 2015, doi: https://doi.org/10.4161/15592324.2014.992287.
A. L. K. Muhammad Hamayun, Sumera Afzal Khan, Zabta Khan Shinwari, “Effect of polyethylene glycol induced drought stress on physio-hormonal attributes of soybean,” Pakistan Journal of Botany. Accessed: Mar. 02, 2025. [Online]. Available: https://www.researchgate.net/publication/230845375_Effect_of_polyethylene_glycol_induced_drought_stress_on_physio-hormonal_attributes_of_soybean
M. T. Melanie Hauer-Jákli, “Critical Leaf Magnesium Thresholds and the Impact of Magnesium on Plant Growth and Photo-Oxidative Defense: A Systematic Review and Meta-Analysis From 70 Years of Research,” Front. Plant Sci., vol. 10, 2019, doi: https://doi.org/10.3389/fpls.2019.00766.
L. J. W. Peter K. Hepler, “Calcium at the Cell Wall-Cytoplast Interface,” J. Integr. Plant Biol., 2010, doi: https://doi.org/10.1111/j.1744-7909.2010.00923.x.
C. Hermans, G. N. Johnson, R. J. Strasser, and N. Verbruggen, “Physiological characterisation of magnesium deficiency in sugar beet: Acclimation to low magnesium differentially affects photosystems I and II,” Planta, vol. 220, no. 2, pp. 344–355, Dec. 2004, doi: 10.1007/S00425-004-1340-4/METRICS.
T. M. Hildebrandt, “Synthesis versus degradation: directions of amino acid metabolism during Arabidopsis abiotic stress response,” Plant Mol. Biol., vol. 98, no. 1–2, pp. 121–135, Sep. 2018, doi: 10.1007/S11103-018-0767-0/METRICS.
A. Caverzan, G. Passaia, M. Margis-Pinheiro, “Plant responses to stresses: Role of ascorbate peroxidase in the antioxidant protection,” Genet. Mol. Biol, vol. 35, 2012, doi: 10.1590/S1415-47572012000600016.
S. Javad et al., “Hydrogen sulphide alleviates cadmium stress in Trigonella foenum-graecum by modulating antioxidant enzymes and polyamine content,” Plant Biol., vol. 24, no. 4, pp. 618–626, Jun. 2022, doi: 10.1111/PLB.13393.
J. Z. Jingjing Jiang, Shenghui Ma, Nenghui Ye, Ming Jiang, Jiashu Cao, “WRKY transcription factors in plant responses to stresses,” J. Integr. Plant Biol., 2016, doi: https://doi.org/10.1111/jipb.12513.
A. Khan, A.R., Qayyum, “Management of rainfed farming,” Progress. Farming, 1986.
Khushboo, K. Bhardwaj, P. Singh, M. Raina, V. Sharma, and D. Kumar, “Exogenous application of calcium chloride in wheat genotypes alleviates negative effect of drought stress by modulating antioxidant machinery and enhanced osmolyte accumulation,” Vitr. Cell. Dev. Biol. - Plant, vol. 54, no. 5, pp. 495–507, Oct. 2018, doi: 10.1007/S11627-018-9912-3/METRICS.
É. A. Kido, J. R. C. Ferreira-Neto, V. Pandolfi, A. C. de Melo Souza, and A. M. Benko-Iseppon, “Drought Stress Tolerance in Plants: Insights from Transcriptomic Studies,” Drought Stress Toler. Plants, Vol 2 Mol. Genet. Perspect., pp. 153–185, Jan. 2016, doi: 10.1007/978-3-319-32423-4_6.
S. Köşkeroǧlu and A. L. Tuna, “The investigation on accumulation levels of proline and stress parameters of the maize (Zea mays L.) plants under salt and water stress,” Acta Physiol. Plant., vol. 32, no. 3, pp. 541–549, Jan. 2010, doi: 10.1007/S11738-009-0431-Z/METRICS.
J. Kudla, O. Batistič, and K. Hashimoto, “Calcium Signals: The Lead Currency of Plant Information Processing,” Plant Cell, vol. 22, no. 3, pp. 541–563, Apr. 2010, doi: 10.1105/TPC.109.072686.
Z. N. Malyukova LS, Nechaeva TL, Zubova MYu, Gvasalia MV, Koninskaya NG, “Physiological and biochemical characterization of tea (Camellia sinensis L.) microshoots in vitro: The norm, osmotic stress, and effects of calcium,” Sel’skokhozyaistvennaya Biol., vol. 55, no. 5, pp. 970–980, 2020, doi: 10.15389/agrobiology.2020.5.970eng.
L. S. LS Malyukova, ZV Pritula, NV Kozlova, AV Velikiy, EV Rogozhina, VV Kerimzade, “Effects of calcium-containing natural fertilizer on Camellia sinensis (L.) Kuntze,” Bangladesh J. Bot., vol. 50, no. 1, 2021, doi: https://doi.org/10.3329/bjb.v50i1.52686.
M. Naeem, J. R. Traub, H. ur R. Athar, and W. Loescher, “Exogenous calcium mitigates heat stress effects in common bean: a coordinated impact of photoprotection of PSII, up-regulating antioxidants, and carbohydrate metabolism,” Acta Physiol. Plant., vol. 42, no. 12, pp. 1–13, Dec. 2020, doi: 10.1007/S11738-020-03171-4/METRICS.
X.-X. Z. Li-Jun Ou, Zhou-Bin Liu, Yu-Ping Zhang, “Effects of exogenous Ca 2+ on photosynthetic characteristics and fruit quality of pepper under waterlogging stress,” Chil. J. Agric. Res., vol. 77, no. 2, 2017, doi: http://dx.doi.org/10.4067/S0718-58392017000200126.
G. S. Premachandra, D. T. Hahn, and R. J. Joly, “Leaf Water Relations and Gas Exchange in Two Grain Sorghum Genotypes Differing in Their Pre- and Post-Flowering Drought Tolerance,” J. Plant Physiol., vol. 143, no. 1, pp. 96–101, Jan. 1994, doi: 10.1016/S0176-1617(11)82103-6.
P. Kumar, “Measurement of Ascorbate Peroxidase Activity in Sorghum,” Bio-protocol, vol. 12, no. 20, Oct. 2022, doi: 10.21769/BIOPROTOC.4531.
Y. W. Kaiyu Qin, Shuaiqun Fan, Fenguo Zhang, “Effects of Exogenous Calcium on Datura Seed Germination under Drought Stress,” J. Bot. Res, vol. 1, no. 2, 2019, doi: https://doi.org/10.30564/jrb.v1i2.862.
C. S. Victor Hugo Ramírez-Builes, Jürgen Küsters, Thais Regina de Souza, “Calcium Nutrition in Coffee and Its Influence on Growth, Stress Tolerance, Cations Uptake, and Productivity,” Front. Agron, vol. 2, 2020, doi: https://doi.org/10.3389/fagro.2020.590892.
A. K. Atif Riaz, Adnan Younis, Asif Riaz Taj, “Effect of drought stress on growth and flowering of marigold (Tagetes erecta L.),” Pakistan Journal of Botany. Accessed: Mar. 02, 2025. [Online]. Available: https://www.researchgate.net/publication/259484411_Effect_of_drought_stress_on_growth_and_flowering_of_marigold_Tagetes_erecta_L
A. Sahu, K. Kishore, R. K. Nayak, S. N. Dash, S. C. Sahoo, and S. Barik, “Influence of potassium on mineral content, yield and quality attributes of dragon fruit (Selenicereus monacanthus) in acidic soil of Eastern tropical region of India,” J. Plant Nutr., vol. 46, no. 11, pp. 2621–2636, 2023, doi: 10.1080/01904167.2022.2160744.
D. C. S. R.K. Sairam, D.S. Shukla, “Stress induced injury and antioxidant enzymes in relation to drought tolerance in wheat genotypes,” Biol. Plant., vol. 39, pp. 357–364, 1997, doi: 10.1023/A:1001009812864.
K. Srinivasan, “Fenugreek (Trigonella foenum-graecum): A Review of Health Beneficial Physiological Effects,” Food Rev. Int., vol. 22, no. 2, pp. 203–224, Apr. 2006, doi: 10.1080/87559120600586315.
I. Türkan, M. Bor, F. Özdemir, and H. Koca, “Differential responses of lipid peroxidation and antioxidants in the leaves of drought-tolerant P. acutifolius Gray and drought-sensitive P. vulgaris L. subjected to polyethylene glycol mediated water stress,” Plant Sci., vol. 168, no. 1, pp. 223–231, Jan. 2005, doi: 10.1016/J.PLANTSCI.2004.07.032.
Y. J. Z. L. van den Berg, “Response of South African indigenous grass species to drought stress induced by polyethylene glycol (PEG) 6000,” South African J. Bot., vol. 72, no. 2, pp. 284–286, 2006, doi: https://doi.org/10.1016/j.sajb.2005.07.006.
G. Verma, D. Srivastava, P. Tiwari, and D. Chakrabarty, “ROS Modulation in Crop Plants Under Drought Stress,” React. Oxyg. Nitrogen Sulfur Species Plants Prod. Metab. Signal. Def. Mech., pp. 311–336, Jul. 2019, doi: 10.1002/9781119468677.CH13.
S. V. Theysshana Visuvanathan, Leslie Thian Lung Than, Johnson Stanslas, Shu Yih Chew, “Revisiting Trigonella foenum-graecum L.: Pharmacology and Therapeutic Potentialities,” Plants, vol. 11, no. 11, p. 1450, 2022, doi: https://doi.org/10.3390/plants11111450.
J. Wery, S. N. Silim, E. J. Knights, R. S. Malhotra, and R. Cousin, “Screening techniques and sources of tolerance to extremes of moisture and air temperature in cool season food legumes,” pp. 439–456, 1994, doi: 10.1007/978-94-011-0798-3_26.
X. Du Huayan Yin , Fan Yang, Xiaoyan He, Ping Mu, and W. Ma, “Advances in the functional study of glutamine synthetase in plant abiotic stress tolerance response,” Crop J., vol. 10, no. 4, pp. 917–923, 2022, doi: https://doi.org/10.1016/j.cj.2022.01.003.
C. Yue et al., “Effects of cold acclimation on sugar metabolism and sugar-related gene expression in tea plant during the winter season,” Plant Mol. Biol., vol. 88, no. 6, pp. 591–608, Aug. 2015, doi: 10.1007/S11103-015-0345-7/METRICS.
Jian-Kang Zhu, “Abiotic Stress Signaling and Responses in Plants,” Cell, vol. 167, no. 2, pp. 313–324, 2016, [Online]. Available: https://www.cell.com/cell/fulltext/S0092-8674(16)31080-7?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS0092867416310807%3Fshowall%3Dtrue

Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 50sea

This work is licensed under a Creative Commons Attribution 4.0 International License.