Parallel Electric Fields Associated with Double Layers in Kappa Distributed Space Plasmas

Authors

  • Saba Khalid Department of Physics, GC University, Lahore 54000, Pakistan
  • Muhammad Nouman Sarwar Qureshi Department of Physics, GC University, Lahore 54000, Pakistan
  • Umm e Hira Department of Physics, GC University, Lahore 54000, Pakistan
  • Shoaib Akhtar Department of Physics, GC University, Lahore 54000, Pakistan

Keywords:

Double layers, Kappa distribution, Electric field structures, Kinetic Alfven waves

Abstract

Parallel electric field structures associated with double layers (DLs) provide the best explanation for the physical mechanism underlying charged particle energization acceleration at sites of magnetic reconnection. In-situ measurements of reconnection sites by various satellites such as MMS, THEMIS, and FAST confirmed the connection of charged particle energization with the large parallel electric fields in the auroral regions, Earth's plasma sheet, and the separatrix region of the magnetosphere. We employed the fully nonlinear Sagdeev potential technique and multi-fluid theory for electron-ion plasma to find double-layer solutions and the accompanying electric field at the reported sites. Considering electrons to be kappa distributed, we have taken into account the ion inertial effect. Specifically, at non-Maxwellian effective temperature scales, parallel electric fields related to the Alfvénic double layer have been studied and compared with the observations. We have shown that the nonthermal parameter kappa and Alfvénic Mach number ????A considerably alter the properties of DLs and the associated electric field of kinetic Alfvén waves.

References

M. André, A. Vaivads, S. C. Buchert, A. N. Fazakerley, “Thin electron-scale layers at the magnetopause,” Geophys. Res. Lett., 2004, doi: https://doi.org/10.1029/2003GL018137.

J. F. Drake, M. A. Shay, W. Thongthai, and M. Swisdak, “Production of energetic electrons during magnetic reconnection,” Phys. Rev. Lett., vol. 94, no. 9, p. 095001, Mar. 2005, doi: 10.1103/PHYSREVLETT.94.095001.

P. L. Pritchett, F. V. Coroniti, “Three-dimensional collisionless magnetic reconnection in the presence of a guide field,” J. Geophys. Res. Sp. Phys., 2004, doi: https://doi.org/10.1029/2003JA009999.

A. Vaivads, A. Retinò, and M. André, “Magnetic reconnection in space plasma,” Plasma Phys. Control. Fusion, vol. 51, no. 12, p. 124016, Nov. 2009, doi: 10.1088/0741-3335/51/12/124016.

I. Y. Vasko, R. Wang, F. S. Mozer, Stuart D. Bale, et al., “On the Nature and Origin of Bipolar Electrostatic Structures in the Earth’s Bow Shock,” Front. Phys, vol. 8, 2020, doi: https://doi.org/10.3389/fphy.2020.00156.

M. A. Raadu, “Particle acceleration mechanisms in space plasmas,” Phys. Chem. Earth, Part C Solar, Terr. Planet. Sci., vol. 26, no. 1–3, pp. 55–59, 2001, doi: https://doi.org/10.1016/S1464-1917(00)00090-8.

F. S. Mozer, C. A. Kletzing, “Direct observation of large, quasi-static, parallel electric fields in the auroral acceleration region,” Geophys. Res. Lett., 1998, doi: https://doi.org/10.1029/98GL00849.

L. Fletcher and H. S. Hudson, “Impulsive Phase Flare Energy Transport by Large-Scale Alfvén Waves and the Electron Acceleration Problem,” Astrophys. J., vol. 675, no. 2, 2008, doi: https://doi.org/ 10.1086/527044.

D. J. Gershman, Adolfo F Vinas, John C. Dorelli, S. A. Boardsen, et al., “Wave-particle energy exchange directly observed in a kinetic Alfvén-branch wave,” Nat. Commun., vol. 8, no. 1, p. 14719, 2017, doi: https://doi.org/10.1038/ncomms14719.

Saba Khalid, M. N. S. Qureshi, and W. Masood, “Compressive and rarefactive solitary structures of coupled kinetic Alfven-acoustic waves in non-Maxwellian space plasmas,” Phys. Plasmas, vol. 26, no. 9, Sep. 2019, doi:https://doi.org/10.1063/1.5115478/263564.

H. A. Shah, W. Masood, M. N. S. Qureshi, P. H. Yoon, “Nonlinear kinetic Alfvén waves with non-Maxwellian electron population in space plasmas,” J. Geophys. Res. Sp. Phys., 2015, doi: https://doi.org/10.1002/2014JA020459.

V. M. Vasyliunas, “A survey of low-energy electrons in the evening sector of the magnetosphere with OGO 1 and OGO 3,” J. Geophys. Res., vol. 73, no. 9, pp. 2839–2884, May 1968, doi: https://doi.org/10.1029/JA073I009P02839.

N. F. Cramer, “The physics of Alfvén waves,” John Wiley Sons, 2001, [Online]. Available: https://download.e-bookshelf.de/download/0000/6039/10/L-G-0000603910-0002364724.pdf

A. F. Viñas, Pablo S. Moya, Roberto E. Navarro, J. A. Valdivia, et al., “Electromagnetic fluctuations of the whistler-cyclotron and firehose instabilities in a Maxwellian and Tsallis-kappa-like plasma,” J. Geophys. Res. Sp. Phys., 2015, doi: https://doi.org/10.1002/2014JA020554.

V. Pierrard and M. Lazar, “Kappa Distributions: Theory and Applications in Space Plasmas,” Sol. Phys., vol. 267, no. 1, pp. 153–174, Nov. 2010, doi: https://doi.org/10.1007/S11207-010-9640-2.

E. M. Lifshitz and L. P. Pitaevskii, "Physical Kinetics"-Evgeniĭ Mikhaĭlovich Lifshit︠s︡, Lev Petrovich Pitaevskiĭ - Google Books,” Pergamon Press. Accessed: Mar. 09, 2025. [Online]. Available: https://books.google.com.pk/books/about/Physical_Kinetics.html?id=tQNTIOPaJukC&redir_esc=y.

Saba Khalid, M. N. S. Qureshi, and W. Masood, “Nonlinear kinetic Alfven waves in space plasmas with generalized (r, q) distribution,” Astrophys. Space Sci., vol. 363, no. 10, pp. 1–9, Oct. 2018, doi: https://doi.org/10.1007/S10509-018-3444-5/METRICS.

R. E. Ergun, L. Andersson, J. Tao, V. Angelopoulos, et al., “Observations of double layers in earth’s plasma sheet,” Phys. Rev. Lett., vol. 102, no. 15, Apr. 2009, doi: https://doi.org/10.1103/PHYSREVLETT.102.155002.

Downloads

Published

2025-03-30

How to Cite

Khalid, S., Qureshi, M. N. S., Umm e Hira, & Akhtar, S. (2025). Parallel Electric Fields Associated with Double Layers in Kappa Distributed Space Plasmas. International Journal of Innovations in Science & Technology, 7(1), 664–674. Retrieved from https://journal.50sea.com/index.php/IJIST/article/view/1204

Most read articles by the same author(s)