A Robotic Simulation for Aerial Monitoring and Disease Detection of Gladiolus Field

Authors

  • Arisha Saeed Akkas Lahore College for Women University, Lahore, Pakistan
  • Nimra Ejaz Lahore College for Women University, Lahore, Pakistan
  • Kanwal Atif University of Central Punjab, Lahore, Pakistan https://orcid.org/0009-0001-9734-2896
  • Maria Anjum Lahore College for Women University, Lahore, Pakistan
  • Syed Atif Mehdi University of Central Punjab, Lahore, Pakistan

Keywords:

Simulation, UAV, Robot Operating System, Disease Detection, Precision Agriculture

Abstract

Agriculture is an essential sector that is witnessing the integration of advanced technologies to improve productivity and efficiency. Aerial crop monitoring using drones has surfaced as a pivotal technology for precision agriculture, allowing farmers to collect detailed data regarding crop health, soil conditions, and pest infestations. A robotic farm monitoring system in simulation can provide an initial platform to test various automated services before deploying them in the real field. This paper presents an agricultural robotic simulator currently developed for the gladiolus field. Simulation has been designed using V-REP (now known as CoppeliaSim) and Robot Operating System (ROS). Autonomous path planning and navigation are achieved through Hector Simultaneous Localization and Mapping (SLAM) and Rapidly Exploring Random Trees (RRT). One of the most common and fatal diseases of the gladiolus plant named ’Fusarium yellow’ has been successfully detected through image processing. This simulation is specifically designed to save resources and reduce the time and cost of developing and testing real-time autonomous aerial robotic systems and test algorithms for crop monitoring. Usability evaluation of the developed system through user survey shows positive results.

References

Food and Agriculture Organization, “How to Feed the World in 2050,” Exec. Summ. Expert Meet. How to Feed World 2050, Rome, Italy, 2009, [Online]. Available. https.//www.fao.org/fileadmin/templates/wsfs/docs/expert_paper/How_to_Feed_the_World_in_2050.pdf

A.-K. Mahlein, “Plant Disease Detection by Imaging Sensors – Parallels and Specific Demands for Precision Agriculture and Plant Phenotyping,” vol. 100, no. 2, pp. 241–251, Jan. 2016, doi. 10.1094/PDIS-03-15-0340-FE.

Y. Fang and R. P. Ramasamy, “Current and prospective methods for plant disease detection,” Biosensors, vol. 5, no. 3, pp. 537–561, 2015, doi. 10.3390/bios5030537.

K. Steddom, M. Bredehoeft, M. Khan, and C. Rush, “Comparison of Visual and Multispectral Radiometric Disease Evaluations of Cercospora Leaf Spot of Sugar Beet,” Plant Dis., vol. 89, no. 2, pp. 153–158, 2005, doi. 10.1094/PD-89-0153.

M. Mahmud, M. Abidin, and Z. Mohamed, “Crop identification and navigation design based on probabilistic roadmap for crop inspection robot,” Int. Conf. Agric. Food Eng., vol. 23, p. 25, 2016, [Online]. Available. https.//www.researchgate.net/publication/314152363_Crop_identification_and_navigation_design_based_on_probabilistic_roadmap_for_crop_inspection_robot

H. Mansur, S. Welch, L. Dempsey, and D. Flippo, “Importance of Photo-Realistic and Dedicated Simulator in Agricultural Robotics,” Eng., vol. 15, pp. 318–327, 2023, doi. 10.4236/eng.2023.155025.

M. H. Zaheer, S. A. Mehdi, H. E. Keen, and K. Berns, “Detection of Fungus in Gladiolus Fields Using a Quadcopter,” Mech. Mach. Sci., vol. 102, pp. 127–134, 2021, doi. 10.1007/978-3-030-75259-0_14.

N. Koenig and A. Howard, “Design and use paradigms for Gazebo, an open-source multi-robot simulator,” 2004 IEEE/RSJ Int. Conf. Intell. Robot. Syst., vol. 3, pp. 2149–2154, 2004, doi. 10.1109/IROS.2004.1389727.

S. Shah, D. Dey, C. Lovett, and A. Kapoor, “AirSim. High-Fidelity Visual and Physical Simulation for Autonomous Vehicles,” Springer Proc. Field Serv. Robotics., vol. 5, pp. 621–635, 2018, doi. 10.1007/978-3-319-67361-5_40.

Y. Song, S. Naji, E. Kaufmann, A. Loquercio, and D. Scaramuzza, “Flightmare. A Flexible Quadrotor Simulator,” Proc. Conf. Robot Learn. (CoRL), PMLR, pp. 1147–1157, 2021, [Online]. Available. https.//rpg.ifi.uzh.ch/docs/CoRL20_Yunlong.pdf

M. Nikolaiev, M. Novotarskyi, “Comparative Review of Drone Simulators,” Information, Comput. Intell. Syst., vol. 4, 2024, doi. https.//doi.org/10.20535/2786-8729.4.2024.300614.

A. Koubaa, Robot Operating System (ROS), vol. 1. in Studies in Computational Intelligence, vol. 625. Cham. Springer International Publishing, 2016. doi. 10.1007/978-3-319-26054-9.

N. Tsolakis, D. Bechtsis, and D. Bochtis, “AgROS. A Robot Operating System Based Emulation Tool for Agricultural Robotics,” Agronomy, vol. 9, no. 403, 2019, doi. https.//doi.org/10.3390/agronomy9070403.

CoppeliaSim, “CoppeliaSim User Manual,” Version 4.9, Accessed. Feb 27, 2025. [Online] Available. https.//manual.coppeliarobotics.com/index.html

E. Rohmer, S. P. N. Singh, and M. Freese, “V-REP. A versatile and scalable robot simulation framework,” IEEE Int. Conf. Intell. Robot. Syst., pp. 1321–1326, 2013, doi. 10.1109/IROS.2013.6696520.

B. Van De Walker, B. Byrne, B. Purdie, et al. “Developing a Realistic Simulation Environment for Robotics Harvesting Operations in a Vegetable Greenhouse,” Agronomy, vol. 11, no. 9, p. 1848, 2021, doi. https.//doi.org/10.3390/agronomy11091848.

S. Kohlbrecher, “Hector SLAM,” Accessed.Feb 27, 2025. [Online] Available. https.//wiki.ros.org/hector_slam/Tutorials

S. M. LaValle, J. J. Kuffner, “Rapidly-Exploring Random Trees. Progress and Prospects” Algorithmic Comput. Robot., pp. 303–307, Apr. 2001, doi. 10.1201/9781439864135-43.

J. Pak, J. Kim, Y. Park, and H. I. Son, “Field Evaluation of Path-Planning Algorithms for Autonomous Mobile Robot in Smart Farms,” IEEE Access, vol. 10, pp. 60253–60266, 2022, doi. 10.1109/ACCESS.2022.3181131.

M. F. Heimann and G. L. Worf, “Gladiolus disorder. Fusarium yellows and bulb rot,”, Accessed. 27 Feb, 2025. [Online] Available. https.//barron.extension.wisc.edu/files/2023/02/Gladiolus-Disorder-Fusarium-Yellows-and-Bulb-Rot.pdf

M. K. N. Shah, M. B. J. Dutt, and H. Modh, “Quadrotor – An Unmanned Aerial Vehicle”, Int. Jour. Eng. Dev. Res., vol. 2, no. 1, pp. 1299-1303, March 2014, [Online] Available. https.//rjwave.org/IJEDR/papers/IJEDR1401231.pdf

S. A. Mehdi, C. Armbrust, J. Koch, and K. Berns, “Methodology for robot mapping and navigation in assisted living environments,” Proc. 2nd Int. Conf. PErvasive Technol. Relat. to Assist. Environ., pp. 1–6, 2009, doi. 10.1145/1579114.1579176.

H. Omrane, M. S. Masmoudi, and M. Masmoudi, “Fuzzy logic based control for autonomous mobile robot navigation,” Comput. Intell. Neurosci., 2016, doi. 10.1155/2016/9548482.

J. Zhao, S. Liu, and J. Li, “Research and Implementation of Autonomous Navigation for Mobile Robots Based on SLAM Algorithm under ROS,” Sensors, vol. 22, no. 11, p. 4172, 2022, doi. 10.3390/s22114172.

H. Taheri and Z. C. Xia, “SLAM; definition and evolution,” Eng. Appl. Artif. Intell., vol. 97, p. 104032, Jan. 2021, doi. 10.1016/J.ENGAPPAI.2020.104032.

J. M. Santos, D. Portugal, and R. P. Rocha, “An evaluation of 2D SLAM techniques available in Robot Operating System,” 2013 IEEE Int. Symp. Safety, Secur. Rescue Robot. SSRR 2013, 2013, doi. 10.1109/SSRR.2013.6719348.

S. Kohlbrecher, O. Von Stryk, J. Meyer, and U. Klingauf, “A flexible and scalable SLAM system with full 3D motion estimation,” 9th IEEE Int. Symp. Safety, Secur. Rescue Robot. SSRR 2011, pp. 155–160, 2011, doi. 10.1109/SSRR.2011.6106777.

J. P. Vásconez, F. Basoalto, I. C. Briceño, J. M. Pantoja, R. A. Larenas, J. H. Rios, and F. A. Castro, “Comparison of path planning methods for robot navigation in simulated agricultural environments,” Procedia Comput. Sci., vol. 220, pp. 898–903, 2023, doi. 10.1016/j.procs.2023.03.122.

S. LaValle, “Rapidly-exploring random trees . a new tool for path planning,” Annu. Res. Rep. 9811, 1998, Accessed. 27 Feb, 2025. [Online] Available. https.//lavalle.pl/papers/Lav98c.pdf

H. H. A. Kadouf and Y. M. Mustafah, “Colour-based Object Detection and Tracking for Autonomous Quadrotor UAV,” IOP Conf. Ser. Mater. Sci. Eng., vol. 53, 2013, doi. 10.1088/1757-899X/53/1/012086.

A. K. Chaubey, “Comparison of The Local and Global Thresholding Methods in Image Segmentation,” World Journal of Research and Review, vol. 2, no. 1, 2016. Accessed. Feb. 27, 2025. [Online]. Available. https.//www.academia.edu/29433086/Comparison_of_The_Local_and_Global_Thresholding_Methods_in_Image_Segmentation

D. Benyon, “Designing User Experience,” Pearson UK, 2019, [Online] Available. https.//books.google.com.pk/books?id=MXqFDwAAQBAJ

P. Morville, “User Experience Design,” Semantic Studios. Accessed. Feb. 27, 2025. [Online]. Available. https.//semanticstudios.com/user_experience_design/

Downloads

Published

2025-03-12

How to Cite

Akkas, A. S., Ejaz, N., Atif, K., Anjum, M., & Mehdi, S. A. (2025). A Robotic Simulation for Aerial Monitoring and Disease Detection of Gladiolus Field. International Journal of Innovations in Science & Technology, 7(1), 550–565. Retrieved from https://journal.50sea.com/index.php/IJIST/article/view/1207