Developing an Arabic-Urdu Ontology of Quranic Concepts: A Semantic Approach

Authors

Keywords:

Arabic-Urdu Ontology, Quranic Concepts, Semantic Mapping, Computational Linguistics, Knowledge Representation

Abstract

An Arabic-Urdu ontology system dedicated to Quranic concepts represents a necessity for protecting the semantic value and making religious texts more accessible during Quranic study. Ontology-driven annotation tools show their ability to achieve precise translations and thematic searches by establishing their effects on the translation process. Researchers built this ontology using Protégé 5.6.4 which classifies Quranic concepts into twelve specific sections from Corpus.quran.com: Artifact, Astronomical Body, Event, False Deity, Holy Book, Language, Living Creation, Location, Physical Attribute, Physical Substance, Religion and Weather Phenomena. Validation of the ontology included expert evaluation and a HermiT computational assessment that led to user testing and an accuracy rate of 89.31%. The system uses SPARQL queries as a method to achieve both organized and efficient retrieval of Quranic knowledge. The analysis emphasizes the value of ontological structures as a means to connect Arabic and Urdu semantics which then improves both Quranic interpretation and computational linguistic understanding. While the methodology effectively maps Quranic concepts, challenges such as language nuances and theological precision persist, requiring further advancements in machine learning and natural language processing. Future research should focus on expanding ontology categories, integrating AI-based models, and enhancing phonetic mappings to improve the ontology’s adaptability and usability in diverse linguistic and cultural settings.

References

Bendjamaa, F., and N. Taleb. 2024. "OntoDin: An Islamic Ontology of Quran and Hadith." The International Arab Journal of Information Technology 21: 773–785. https://doi.org/10.34028/iajit/21/5/1.

Zoya, Latif, S. Latif, R. Majeed, and N. S. M. Jamail. 2023. "Assessing Urdu Language Processing Tools via Statistical and Outlier Detection Methods on Urdu Tweets." ACM Transactions on Asian and Low-Resource Language Information Processing 22 (10): 1–31. https://doi.org/10.1145/3622939.

Souci, M. D. E., Y. Cherifi, L. Berkani, M. S. H. Ameur, and A. Guessoum. 2023. "Enrichment of Arabic WordNet Using Machine Translation and Transformers." Proceedings of the 6th International Conference on Natural Language and Speech Processing (ICNLSP 2023), 333–340. https://aclanthology.org/2023.icnlsp-1.36.pdf.

Alshammeri, M. H. K. 2022. Deep Learning and Distributional Semantics for the Qur’an. PhD diss., University of Leeds. https://etheses.whiterose.ac.uk/32374/.

Shohoud, Y., M. Shoman, and S. Abdelazim. 2023. "Quranic Conversations: Developing a Semantic Search Tool for the Quran Using Arabic NLP Techniques." arXiv. https://doi.org/10.48550/arXiv.2311.05120.

Harrag, F., A. Al-Nasser, A. Al-Musnad, and R. Al-Shaya. 2020. "Quran Intelligent Ontology Construction Approach Using Association Rules Mining." arXiv. https://doi.org/10.48550/arXiv.2008.03232.

Basharat, A., & Amin, R. An Ontology for the Tajweed of the Quran.

Rajput, Q. 2014. "Ontology-Based Semantic Annotation of Urdu Language Web Documents." Procedia Computer Science 35: 662–670.

https://doi.org/10.1016/j.procs.2014.08.148

Yusuf, N., M. A. M. Yunus, N. Wahid, N. M. Nawi, N. A. Samsudin, and N. Arbaiy. 2020. "Query Expansion Method for Quran Search Using Semantic Search and Lucene Ranking." Journal of Engineering Science and Technology 15 (1): 675–692.

Shafi, J., R. M. Adeel Nawab, and P. Rayson. 2023. "Semantic Tagging for the Urdu Language: Annotated Corpus and Multi-Target Classification Methods." ACM Transactions on Asian and Low-Resource Language Information Processing 22 (6): 1–32. https://doi.org/10.1145/3582496.

Zafar, A., M. Wasim, S. Zulfiqar, T. Waheed, and A. Siddique. 2024. "Transformer-Based Topic Modeling for Urdu Translations of the Holy Quran." ACM Transactions on Asian and Low-Resource Language Information Processing 23 (10): 1–21. https://doi.org/10.1145/3694967.

Alqahtani, M. M., and E. Atwell. 2018. "Developing Bilingual Arabic-English Ontologies of Al-Quran." 2018 IEEE 2nd International Workshop on Arabic and Derived Script Analysis and Recognition (ASAR), 96–101. https://ieeexplore.ieee.org/abstract/document/8480237/.

Ahmed, R. I., M. H. Sayed, and T. M. Wahbi. 2022. "Quran Ontology: Review on Recent Research Issues." International Journal of Science and Research 11 (12): 189–197. https://www.doi.org/10.21275/SR221201170653.

Ali, N., M. Hasanah, and A. Prasetyo. 2020. "The Integration of Qur’an and Linguistic Education Based on Ontology of Qur’anic Concept in Quranic Arabic Corpus." Ijaz Arabi Journal of Arabic Learning 3 (2).

http://ejournal.uin-malang.ac.id/index.php/ijazarabi/article/view/9769.

Zouaoui, S., and K. Rezeg. 2021. "A Novel Quranic Search Engine Using an Ontology-Based Semantic Indexing." Arabian Journal for Science and Engineering 46 (4): 3653–3674. https://doi.org/10.1007/s13369-020-05082-5.

Daud, A., M. H. Ullah, A. R. Banjar, and A. A. Alshdadi. 2022. "Ontological Modeling and Semantic Search in Quran." IJCSNS 22 (5): 771.

https://doi.org/10.22937/IJCSNS.2022.22.5.105

Mirarab, A., F. S. Tabatabai Amiri, S. Dehghanisanij, and N. HosseinKhalili. 2023. "Development of Qur’anic Ontologies: A Domain Review Study." International Journal of Information Science and Management (IJISM) 21 (3): 229–241.

https://doi.org/10.22034/ijism.2023.1977928.0

Beirade, F., H. Azzoune, and D. E. Zegour. 2021. "Semantic Query for Quranic Ontology." Journal of King Saud University-Computer and Information Sciences 33 (6): 753–760. https://doi.org/10.1016/j.jksuci.2019.04.005

Iqbal, R., M. A. A. Murad, and A. Ashraf. 2020. "Quantitative Assessment of Concept Maps for Conceptualizing Domain Ontologies: A Case of Quran." Pertanika Journal of Science & Technology 28 (1).

Alsalhee, R. Y., and A. M. Abdullah. 2022. "Building Quranic Stories Ontology Using MappingMaster Domain-Specific Language." International Journal of Electrical and Computer Engineering 12 (1): 684.

http://doi.org/10.11591/ijece.v12i1.pp684-693

Ghembaza, M. 2019. "Specialized Quranic Semantic Search Engine." International Journal of Computer Science and Information Security (IJCSIS) 17 (2).

Alshammari, I. K., E. Atwell, and M. A. Alsalka. 2024. "Linking Quran and Hadith Topics in an Ontology Using Word Embeddings and Cellfie Plugin." Proceedings of the 7th International Conference on Natural Language and Speech Processing (ICNLSP 2024), 449–455.

Downloads

Published

2025-03-30

How to Cite

Nadeem, F., Arshad Awan, M., Khaleeq, D., & Tariq, M. (2025). Developing an Arabic-Urdu Ontology of Quranic Concepts: A Semantic Approach . International Journal of Innovations in Science & Technology, 7(1), 637–650. Retrieved from https://journal.50sea.com/index.php/IJIST/article/view/1254