A Compact Slotted Micro-Strip Patch Antenna Operating at 28 GHz for 5 G-IoT Applications

Authors

  • Ali Hassan Electrical Engineering Department HITEC University Taxila, Pakistan
  • N. Nizam Uddin Biomedical Engineering Department HITEC University Taxila, Pakistan

Keywords:

IoT, 5G, Patch Antenna, Millimeter Wave

Abstract

This paper aims to present a compact slotted microstrip patch antenna for 5 G-IoT applications operating at a 28 GHz frequency. The antenna structure is modeled on an FR4 substrate with a compact size of 12 mm × 13 mm (substrate height = 1.6 mm, Epsilon = 4.3, and loss tangent = 0.02). The antenna comprises a patch on top of a dielectric substrate and a defected ground plane (DGS) on the bottom side. Slots and curves are incorporated in the patch radiator to achieve the desired resonating frequency of 28 GHz. Simulation results demonstrate a return loss of –22 dB, a bandwidth of 4.64 GHz, a VSWR of 1.16, a gain of 3.2 dBi, and an efficiency of 60%. These attributes make the antenna appropriate for a range of 5 G-IoT applications, including smart cities, industrial IoT, and autonomous systems where high data throughput and reliable connectivity are essential. The overall results depict that the proposed design is a good candidate for deployment in 5 G-enabled IoT ecosystems.

References

M. A. Chung, M. C. Lee, C. C. Hsu, and C. W. Lin, “Multi-Band Coupled-Fed Antenna for 4G LTE, Sub-6G, and WLAN Frequency Bands in Various Electronic Devices,” IEEE Access, vol. 12, pp. 45398–45422, 2024, doi: 10.1109/ACCESS.2024.3380620.

C.-Y.-D. S. Wonbin Hong, “Microwave and Millimeter‐Wave Antenna Design for 5G Smartphone Applications,” Wiley. Accessed: Apr. 28, 2025. [Online]. Available: https://onlinelibrary.wiley.com/doi/book/10.1002/9781394182459

A. N. Uwaechia and N. M. Mahyuddin, “A comprehensive survey on millimeter wave communications for fifth-generation wireless networks: Feasibility and challenges,” IEEE Access, vol. 8, pp. 62367–62414, 2020, doi: 10.1109/ACCESS.2020.2984204.

M. Koripi, “5G Vision and 5G Standardization,” SSRN Electron. J., Mar. 2021, doi: 10.2139/SSRN.3905789.

X. Wang et al., “Millimeter wave communication: A comprehensive survey,” IEEE Commun. Surv. Tutorials, vol. 20, no. 3, pp. 1616–1653, Jul. 2018, doi: 10.1109/COMST.2018.2844322.

R. Dangi, P. Lalwani, G. Choudhary, I. You, and G. Pau, “Study and Investigation on 5G Technology: A Systematic Review,” Sensors 2022, Vol. 22, Page 26, vol. 22, no. 1, p. 26, Dec. 2021, doi: 10.3390/S22010026.

W. Hong, “Solving the 5G Mobile Antenna Puzzle: Assessing Future Directions for the 5G Mobile Antenna Paradigm Shift,” IEEE Microw. Mag., vol. 18, no. 7, pp. 86–102, Nov. 2017, doi: 10.1109/MMM.2017.2740538.

J. Martens, “What Is My Measurement Equipment Actually Doing?: Implications for 5G, Millimeter-Wave, and Related Applications,” IEEE Microw. Mag., vol. 23, no. 1, pp. 18–30, Jan. 2022, doi: 10.1109/MMM.2021.3117317.

S. Y. A. Fatah, E. K. I. K. I. Hamad, W. Swelam, A. M. M. A. Allam, M. F. A. Sree, and H. A. Mohamed, “Design and Implementation of UWB Slot-Loaded Printed Antenna for Microwave and Millimeter Wave Applications,” IEEE Access, vol. 9, pp. 29555–29564, 2021, doi: 10.1109/ACCESS.2021.3057941.

Y. Luo, L. Zhu, Y. Liu, N. W. Liu, and S. Gong, “Multiband Monopole Smartphone Antenna with Bandwidth Enhancement under Radiation of Multiple Same-Order Modes,” IEEE Trans. Antennas Propag., vol. 70, no. 4, pp. 2580–2592, Apr. 2022, doi: 10.1109/TAP.2021.3125364.

A. Desai, T. Upadhyaya, and R. Patel, “Compact wideband transparent antenna for 5G communication systems,” Microw. Opt. Technol. Lett., vol. 61, no. 3, pp. 781–786, Mar. 2019, doi: 10.1002/MOP.31601;JOURNAL:JOURNAL:10982760;PAGE:STRING:ARTICLE/CHAPTER.

A. Hassan et al., “Designs strategies and performance of IoT antennas: a comprehensive review,” Discov. Comput. 2025 281, vol. 28, no. 1, pp. 1–60, Apr. 2025, doi: 10.1007/S10791-025-09536-Y.

A. G. S. A. Gaid, M. A. M. Ali, A. Saif, and W. A. A. Mohammed, “Design and analysis of a low profile, high gain rectangular microstrip patch antenna for 28 GHz applications,” Cogent Eng., vol. 11, no. 1, Dec. 2024, doi: 10.1080/23311916.2024.2322827.

Y. Li, “A microstrip patch antenna for 5G mobile communications,” J. Phys. Conf. Ser., vol. 2580, p. 012063, 2023, doi: 10.1088/1742-6596/2580/1/012063.

H. M. Marzouk, M. I. Ahmed, and A. A. Shaalan, “Novel dual-band 28/38 GHz MIMO antennas for 5g mobile applications,” Prog. Electromagn. Res. C, vol. 93, pp. 103–117, 2019, doi: 10.2528/PIERC19032303.

Y. Jandi, F. Gharnati, and A. Oulad Said, “Design of a compact dual bands patch antenna for 5G applications,” 2017 Int. Conf. Wirel. Technol. Embed. Intell. Syst. WITS 2017, May 2017, doi: 10.1109/WITS.2017.7934628.

J. Saini and S. K. Agarwal, “T and L slotted patch antenna for future mobile and wireless communication,” 8th Int. Conf. Comput. Commun. Netw. Technol. ICCCNT 2017, Dec. 2017, doi: 10.1109/ICCCNT.2017.8203922.

M. N. Hasan, S. Bashir, and S. Chu, “Dual band omnidirectional millimeter wave antenna for 5G communications,” J. Electromagn. Waves Appl., vol. 33, no. 12, pp. 1581–1590, Aug. 2019, doi: 10.1080/09205071.2019.1617790.

Constantine A. Balanis, “ANTENNA THEORY ANALYSIS AND DESIGN 4TH EDITION C2016.pdf,” p. 1104, 2016, Accessed: Apr. 28, 2025. [Online]. Available: https://www.wiley.com/en-us/Antenna+Theory%3A+Analysis+and+Design%2C+4th+Edition-p-9781118642061

B. Cheng, Z. Du, and D. Huang, “A Differentially Fed Broadband Multimode Microstrip Antenna,” IEEE Antennas Wirel. Propag. Lett., vol. 19, no. 5, pp. 771–775, May 2020, doi: 10.1109/LAWP.2020.2979492.

Downloads

Published

2025-05-04

How to Cite

Hassan, A., & Uddin, N. N. (2025). A Compact Slotted Micro-Strip Patch Antenna Operating at 28 GHz for 5 G-IoT Applications. International Journal of Innovations in Science & Technology, 7(7), 13–24. Retrieved from https://journal.50sea.com/index.php/IJIST/article/view/1335