A Comprehensive Toolset for Signal Processing using a Family of Hadamard Transforms

Authors

  • Dure Jabeen Department of Computer Science, Main Campus, IQRA University, Karachi
  • Tahimna Khan Department of Computer Information Technology, Aligarh Institute of Technology (AIT)
  • S. M. Ghazanfar Monir Karachi School of Business & Leadership.
  • Dilbar Hussain Department of Computer Science, Main Campus, IQRA University, Karachi
  • Rumaisa Iftikhar Department of Electronic Engineering, Sir Syed University of Engineering and Technology, Karachi

Keywords:

Basis Vectors, Signal Processing, Real and Complex Signals, Sequency Domain

Abstract

Independent basis of the linear vectors is of paramount significance in the advancement of digital systems that facilitate the processing and storage of information in its digital format. This study undertakes a thorough examination of discrete orthogonal transformations, with particular focus on the family of real and complex Hadamard transforms and their numerous types. The efficacy of various sequences is scrutinized, alongside their mathematical representation, inherent characteristics, and applications in signal processing. An analysis of the computational cost associated with the complex Hadamard Transform and its variants is presented. Furthermore, simulation outcomes are contrasted for the normalized sequency concerning magnitude response, image compression, and peak signal-to-noise ratio across a variety of image processing applications.

References

Melisew Tefera Belachew, “Efficient algorithm for sparse symmetric nonnegative matrix factorization,” Pattern Recognit. Lett., vol. 125, pp. 735–741, 2019, [Online]. Available: https://www.sciencedirect.com/science/article/abs/pii/S0167865519302132?via%3Dihub

D. S. P. and M. H. L. Y. Guo, Y. Mao, “Fast DFT matrices transform based on generalized prime factor algorithm,” J. Commun. Networks, vol. 13, no. 5, pp. 449–455, 2011, [Online]. Available: https://ieeexplore.ieee.org/document/6112301

Zhenjun, T., “Robust image hashing via colour vector angles and discrete wavelet transform,” Image Process., vol. 8, no. 3, pp. 142–149, 2014, [Online]. Available: https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/iet-ipr.2013.0332

Z. P. Lingma Sun, Zhuoran Wang, Hong Pu, Guohui Yuan, Lu Guo, Tian Pu, “Spectral analysis for pulmonary nodule detection using the optimal fractional S-Transform,” Comput. Biol. Med., vol. 119, p. 103675, 2020, [Online]. Available: https://www.sciencedirect.com/science/article/abs/pii/S0010482520300676?via%3Dihub

W. Li, J. Li, X. Liu, and L. Dong, “Two fast vector-wise update algorithms for orthogonal nonnegative matrix factorization with sparsity constraint,” J. Comput. Appl. Math., vol. 375, p. 112785, 2020, doi: https://doi.org/10.1016/j.cam.2020.112785.

V. F. Lorenzo Valdettaro, Michel Rieutord, Thierry Braconnier, “Convergence and round-off errors in a two-dimensional eigenvalue problem using spectral methods and Arnoldi–Chebyshev algorithm,” J. Comput. Appl. Math., vol. 205, no. 1, pp. 382–393, 2007, doi: https://doi.org/10.1016/j.cam.2006.05.009.

S. B. Cooper and J. Van Leeuwen, “Rounding-off Errors in Matrix Processes,” Alan Turing His Work Impact, pp. 377–402, 2013, [Online]. Available: https://www.sciencedirect.com/science/article/abs/pii/B9780123869807500150?via%3Dihub

E. A. N. M.H. Annaby, H.A. Ayad, M.A. Rushdi, “Difference operators and generalized discrete fractional transforms in signal and image processing,” Signal Processing, vol. 151, pp. 1–18, 2018, doi: https://doi.org/10.1016/j.sigpro.2018.04.023.

C. T. Alejandro Gómez-Echavarría, Juan P. Ugarte, “The fractional Fourier transform as a biomedical signal and image processing tool: A review,” Biocybern. Biomed. Eng., vol. 40, no. 3, pp. 1081–1093, 2020, doi: https://doi.org/10.1016/j.bbe.2020.05.004.

Lan, R., “Multiple-Action Transform of Quaternion for Color Images,” IEEE Access, vol. 7, pp. 124283–124294, 2019, [Online]. Available: https://ieeexplore.ieee.org/document/8819965/

A. I. Zahraa Ch. Oleiwi, Dhiah Al-Shammary, Muntasir Al-Asfoor, “Light network high performance discrete cosine transform for digital images,” Vis. Informatics, vol. 5, no. 2, pp. 41–50, 2021, doi: https://doi.org/10.1016/j.visinf.2021.06.001.

N. Roma and L. Sousa, “A tutorial overview on the properties of the discrete cosine transform for encoded image and video processing,” Signal Processing, vol. 91, no. 11, pp. 2443–2464, 2011, doi: https://doi.org/10.1016/j.sigpro.2011.04.015.

T. C. Hsung, D. P. K. Lun, and W. C. Siu, “A deblocking technique for block-transform compressed image using wavelet transform modulus maxima,” IEEE Trans. Image Process., vol. 7, no. 10, pp. 1488–1496, 1998, doi: 10.1109/83.718489.

X. Wang, “Moving window-based double haar wavelet transform for image processing,” IEEE Trans. Image Process., vol. 15, no. 9, pp. 2771–2779, Sep. 2006, doi: 10.1109/TIP.2006.877316.

G. Xu, K. Liu, C. Guo, and Q. Wang, “Natural-ordered complex hadamard transform based shape description and retrieval,” Proc. - 2014 6th Int. Conf. Intell. Human-Machine Syst. Cybern. IHMSC 2014, vol. 2, pp. 55–58, Sep. 2014, doi: 10.1109/IHMSC.2014.116.

Z. L. and X. X. X. Zeng, “A Fast Fusion Method for Visible and Infrared Images Using Fourier Transform and Difference Minimization,” IEEE Access, vol. 8, pp. 213682–213694, 2020, doi: 10.1109/ACCESS.2020.3041759.

P. Zheng and J. Huang, “Efficient Encrypted Images Filtering and Transform Coding with Walsh-Hadamard Transform and Parallelization,” IEEE Trans. Image Process., vol. 27, no. 5, pp. 2541–2556, May 2018, doi: 10.1109/TIP.2018.2802199.

Andrzej Dziech, “New Orthogonal Transforms for Signal and Image Processing,” Appl. Sci., vol. 11, no. 16, p. 7433, 2021, doi: https://doi.org/10.3390/app11167433.

P. G. Freitas, W. Y. L. Akamine, and M. C. Q. Farias, “No-Reference Image Quality Assessment Using Orthogonal Color Planes Patterns,” IEEE Trans. Multimed., vol. 20, no. 12, pp. 3353–3360, 2018, doi: 10.1109/TMM.2018.2839529.

S. Rousseau and D. Helbert, “Compressive Color Pattern Detection Using Partial Orthogonal Circulant Sensing Matrix,” IEEE Trans. Image Process., vol. 29, pp. 670–678, 2020, doi: 10.1109/TIP.2019.2927334.

B. K. L. Isio Sota-Uba, Matthew Bamidele, James Moulton, Karl Booksh, “Authentication of edible oils using Fourier transform infrared spectroscopy and pattern recognition methods,” Chemom. Intell. Lab. Syst., vol. 210, p. 104251, 2021, doi: https://doi.org/10.1016/j.chemolab.2021.104251.

A. S. Turker Tuncer, Sengul Dogan, “Surface EMG signal classification using ternary pattern and discrete wavelet transform based feature extraction for hand movement recognition,” Biomed. Signal Process. Control, vol. 58, p. 101872, 2020, doi: https://doi.org/10.1016/j.bspc.2020.101872.

X. You and Y. Y. Tang, “Wavelet-based approach to character skeleton,” IEEE Trans. Image Process., vol. 16, no. 5, pp. 1220–1231, May 2007, doi: 10.1109/TIP.2007.891800.

T. Wakahara and K. Odaka, “Adaptive normalization of handwritten characters using global/local affine transformation,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 20, no. 12, pp. 1332–1341, 1998, doi: 10.1109/34.735806.

B. Hadjadji, Y. Chibani, and H. Nemmour, “An efficient open system for offline handwritten signature identification based on curvelet transform and one-class principal component analysis,” Neurocomputing, vol. 265, pp. 66–77, 2017, [Online]. Available: https://www.sciencedirect.com/science/article/abs/pii/S0925231217310159?via%3Dihub

B. Y. H. Shih Yin Ooi, Andrew Beng Jin Teoh, Ying Han Pang, “Image-based handwritten signature verification using hybrid methods of discrete Radon transform, principal component analysis and probabilistic neural network,” Appl. Soft Comput., vol. 40, pp. 274–282, 2016, [Online]. Available: https://www.sciencedirect.com/science/article/abs/pii/S1568494615007577?via%3Dihub

S. Rashidi, A. Fallah, and F. Towhidkhah, “Feature extraction based DCT on dynamic signature verification,” Sci. Iran., vol. 19, no. 6, pp. 1810–1819, 2012, doi: https://doi.org/10.1016/j.scient.2012.05.007.

C.-H. Y. Assaidah Adnan, Yang Liu, Chi-Wai Chow, “Analysis of Non-Hermitian symmetry (NHS) IFFT/FFT size efficient OFDM for multiple-client non-orthogonal multiple access (NOMA) visible light communication (VLC) system,” Opt. Commun., vol. 472, p. 125991, 2020, [Online]. Available: http://sciencedirect.com/science/article/abs/pii/S0030401820304211?via%3Dihub

M. Chen, H. Lu, D. Chen, J. Jin, and J. Wang, “An efficient MIMO–OFDM VLC system of combining space time block coding with orthogonal circulant matrix transform precoding,” Opt. Commun., vol. 473, p. 125993, 2020, [Online]. Available: https://www.sciencedirect.com/science/article/abs/pii/S0030401820304223?via%3Dihub

F. Cruz-Roldan, W. A. Martins, P. S. R. Diniz, and M. Moonen, “Achievable Data Rate of DCT-Based Multicarrier Modulation Systems,” IEEE Trans. Wirel. Commun., vol. 18, no. 3, pp. 1739–1749, Mar. 2019, doi: 10.1109/TWC.2019.2896073.

F. E. A. E.-S. K. Ramadan, Moawad I. Dessouky, “Joint equalization and CFO compensation for performance enhancement of MIMO-OFDM communication systems using different transforms with banded-matrix approximation,” AEU - Int. J. Electron. Commun., vol. 119, p. 153157, 2020, [Online]. Available: https://www.sciencedirect.com/science/article/abs/pii/S1434841119318795?via%3Dihub

F. E. A. E.-S. K. Ramadan, Moawad I. Dessouky, “Modified OFDM configurations with equalization and CFO compensation for performance enhancement of OFDM communication systems using symmetry of the Fourier transform,” AEU - Int. J. Electron. Commun., vol. 126, p. 153247, 2020, [Online]. Available: https://www.sciencedirect.com/science/article/abs/pii/S1434841119323453?via%3Dihub

R. H. Damoon Shahbaztabar, Shahpour Alirezaee, Majid Ahmadi, “A MC-CDMA system based on orthogonal filter banks of wavelet transforms and partial combining,” AEU - Int. J. Electron. Commun., vol. 94, pp. 128–138, 2018, [Online]. Available: https://www.sciencedirect.com/science/article/abs/pii/S1434841117327103?via%3Dihub

Z. W. and J. Z. Y. Yu, W. Wang, X. Ouyang, “Sparse Orthogonal Circulant Transform Multiplexing for Coherent Optical Fiber Communication,” IEEE Photonics J., vol. 10, no. 1, pp. 1–14, 2018, doi: 10.1109/JPHOT.2018.2796846.

S. Aathilakshmi, R. Vimala, and K. R. A. Britto, “An elegance of novel digital filter using majority logic on pipelined architecture for SNR improvement in signal processing,” J. Ambient Intell. Humaniz. Comput., pp. 1–9, Apr. 2021, doi: 10.1007/S12652-021-03197-7/METRICS.

K. Ichige, M. Iwaki, and R. Ishii, “Accurate estimation of minimum filter length for optimum FIR digital filters,” IEEE Trans. Circuits Syst. II Analog Digit. Signal Process., vol. 47, no. 10, pp. 1008–1016, 2000, doi: 10.1109/82.877143.

P. J. Ahamed and M. A. Haseeb, “Implementation of digital IIR filter design based on field programmable gate array,” Mater. Today Procedding, vol. 45, no. 2, pp. 2573–2577, 2021, doi: https://doi.org/10.1016/j.matpr.2020.11.273.

P. Löwenborg, H. Johansson, and L. Wanhammar, “Two-channel digital and hybrid analog/digital multirate filter banks with very low-complexity analysis or synthesis filters,” IEEE Trans. Circuits Syst. II Analog Digit. Signal Process., vol. 50, no. 7, pp. 355–367, Jul. 2003, doi: 10.1109/TCSII.2003.813589.

M. K. Suman Yadav, Richa Yadav, Ashwni Kumar, “A novel approach for optimal design of digital FIR filter using grasshopper optimization algorithm,” ISA Trans., vol. 108, pp. 196–206, 2021, [Online]. Available: https://www.sciencedirect.com/science/article/abs/pii/S0019057820303645?via%3Dihub

N. N. Pavel Lyakhov, Maria Valueva, Georgii Valuev, “A Method of Increasing Digital Filter Performance Based on Truncated Multiply-Accumulate Units,” Appl. Sci., vol. 10, no. 24, p. 9052, 2020, doi: https://doi.org/10.3390/app10249052.

J. P. Jean-Jacques Vandenbussche, Peter Lee, “Round-Off Noise of Multiplicative FIR Filters Implemented on an FPGA Platform,” Appl. Sci., vol. 4, no. 2, pp. 99–127, 2014, doi: https://doi.org/10.3390/app4020099.

Z. Khalid, S. Durrani, P. Sadeghi, and R. A. Kennedy, “Spatio-spectral analysis on the sphere using spatially localized spherical harmonics transform,” IEEE Trans. Signal Process., vol. 60, no. 3, pp. 1487–1492, Mar. 2012, doi: 10.1109/TSP.2011.2177265.

J.-M. K. Sacha Lapins, Diana C. Roman, Jonathan Rougier, Silvio De Angelis, Katharine V. Cashman, “An examination of the continuous wavelet transform for volcano-seismic spectral analysis,” J. Volcanol. Geotherm. Res., vol. 389, p. 106728, 2020, [Online]. Available: https://www.sciencedirect.com/science/article/abs/pii/S0377027319303051?via%3Dihub

C. H. Paik, G. L. Cote, J. S. DaPonte, and M. D. Fox, “Fast Hartley Transforms for Spectral Analysis of Ultrasound Doppler Signals,” IEEE Trans. Biomed. Eng., vol. 35, no. 10, pp. 885–888, 1988, doi: 10.1109/10.7298.

Q. Q. Jun Xu, Bingliang Hu, Dazheng Feng, Xiaohui Fan, “Analysis and study of the interlaced encoding pixels in Hadamard transform spectral imager based on DMD,” Opt. Lasers Eng., vol. 50, no. 3, pp. 458–464, 2012, doi: https://doi.org/10.1016/j.optlaseng.2011.10.007.

H. Hosseini-Nejad, A. Jannesari, and A. M. Sodagar, “Data compression in brain-machine/computer interfaces based on the walsh-hadamard transform,” IEEE Trans. Biomed. Circuits Syst., vol. 8, no. 1, pp. 129–137, 2014, doi: 10.1109/TBCAS.2013.2258669.

C. K. Jha and M. H. Kolekar, “Electrocardiogram data compression using DCT based discrete orthogonal Stockwell transform,” Biomed. Signal Process. Control, vol. 46, pp. 174–181, 2018, doi: https://www.sciencedirect.com/science/article/abs/pii/S1746809418301617?via%3Dihub.

M. Morháč and V. Matoušek, “Fast adaptive Fourier-based transform and its use in multidimensional data compression,” Signal Processing, vol. 68, no. 2, pp. 141–153, 1998, [Online]. Available: https://www.sciencedirect.com/science/article/abs/pii/S0165168498000693?via%3Dihub

P. W. Shaofei Dai, Wenbo Liu, Zhengyi Wang, Kaiyu Li, Pengfei Zhu, “An Efficient Lossless Compression Method for Periodic Signals Based on Adaptive Dictionary Predictive Coding,” Appl. Sci., vol. 10, no. 14, p. 4918, 2020, doi: https://doi.org/10.3390/app10144918.

I. Pitas and A. Karasaridis, “Multichannel transforms for signal/image processing,” IEEE Trans. Image Process., vol. 5, no. 10, pp. 1402–1413, 1996, doi: 10.1109/83.536889.

J. F. Barmak Honarvar Shakibaei Asli, “New discrete orthogonal moments for signal analysis,” Signal Processing, vol. 141, pp. 57–73, 2017, doi: https://doi.org/10.1016/j.sigpro.2017.05.023.

Rodrigo Capobianco Guido, “Nearly symmetric orthogonal wavelets for time-frequency-shape joint analysis: Introducing the discrete shapelet transform’s third generation (DST-III) for nonlinear signal analysis,” Commun. Nonlinear Sci. Numer. Simul., vol. 97, p. 105685, 2021, doi: https://doi.org/10.1016/j.cnsns.2020.105685.

David Brandwood, “Fourier Transforms in Radar and Signal Processing, Second Edition,” ARTECH House, p. 262, 2011, [Online]. Available: https://us.artechhouse.com/Fourier-Transforms-in-Radar-and-Signal-Processing-Second-Edition-P1497.aspx

H. S. Stone, “Convolution theorems for linear transforms,” IEEE Trans. Signal Process., vol. 46, no. 10, pp. 2819–2821, 1998, doi: 10.1109/78.720385.

S. C. Pei, J. H. Chang, and J. J. Ding, “Commutative reduced biquaternions and their Fourier transform for signal and image processing applications,” IEEE Trans. Signal Process., vol. 52, no. 7, pp. 2012–2030, Jul. 2004, doi: 10.1109/TSP.2004.828901.

S. C. Pei, J. J. Ding, and J. H. Chang, “Efficient implementation of quaternion Fourier transform, convolution, and correlation by 2-D complex FFT,” IEEE Trans. Signal Process., vol. 49, no. 11, pp. 2783–2797, Nov. 2001, doi: 10.1109/78.960426.

Z. Yan, P. Chao, J. Ma, D. Cheng, and C. Liu, “Discrete convolution wavelet transform of signal and its application on BEV accident data analysis,” Mech. Syst. Signal Process., vol. 159, p. 107823, 2021, doi: https://doi.org/10.1016/j.ymssp.2021.107823.

A. Spriet, M. Moonen, and J. Wouters, “Robustness analysis of Multichannel Wiener filtering and generalized sidelobe cancellation for multimicrophone noise reduction in hearing aid applications,” IEEE Trans. Speech Audio Process., vol. 13, no. 4, pp. 487–503, Jul. 2005, doi: 10.1109/TSA.2005.845821.

W. K. Pratt, “Generalized Wiener Filtering Computation Techniques,” IEEE Trans. Comput., vol. C–21, no. 7, pp. 636–641, 1972, doi: 10.1109/T-C.1972.223567.

C. M. Wennian Yu, Yimin Shao, Jin Xu, “An adaptive and generalized Wiener process model with a recursive filtering algorithm for remaining useful life estimation,” Reliab. Eng. Syst. Saf., vol. 217, p. 108099, 2022, doi: https://doi.org/10.1016/j.ress.2021.108099.

R. T. Hilger, R. E. Santini, and S. A. McLuckey, “Square wave modulation of a mirror lens for ion isolation in a Fourier transform electrostatic linear ion trap mass spectrometer,” Int. J. Mass Spectrom., vol. 362, pp. 1–8, 2014, doi: https://doi.org/10.1016/j.ijms.2014.02.003.

Stephen A. Dyer, “Hadamard transform spectrometry,” Chemom. Intell. Lab. Syst., vol. 12, no. 2, pp. 101–115, 1991, doi: https://doi.org/10.1016/0169-7439(91)80119-B.

C. N. Li, G. R. Hu, and M. J. Liu, “Narrow-band interference excision in spread-spectrum systems using self-orthogonalizing transform-domain adaptive filters,” IEEE J. Sel. Areas Commun., vol. 18, no. 3, pp. 403–406, Mar. 2000, doi: 10.1109/49.840199.

Z. Lu, J. Sun, and K. Butts, “Multiscale asymmetric orthogonal wavelet kernel for linear programming support vector learning and nonlinear dynamic systems identification,” IEEE Trans. Cybern., vol. 44, no. 5, pp. 712–724, 2014, doi: 10.1109/TCYB.2013.2279834.

Z. Mokhtari and M. Sabbaghian, “Near-Optimal Angle of Transform in FrFT-OFDM Systems Based on ICI Analysis,” IEEE Trans. Veh. Technol., vol. 65, no. 7, pp. 5777–5783, Jul. 2016, doi: 10.1109/TVT.2015.2460331.

Xuezhong Wang, “Electronic radar signal recognition based on wavelet transform and convolution neural network,” Alexandria Eng. J., vol. 61, no. 5, pp. 3559–3569, 2022, [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1110016821006049?via%3Dihub

B. Ghahremani, M. Bitaraf, A. K. Ghorbani-Tanha, and R. Fallahi, “Structural damage identification based on fast S-transform and convolutional neural networks,” Structures, vol. 29, pp. 1199–1209, 2021, [Online]. Available: https://www.sciencedirect.com/science/article/abs/pii/S2352012420307104?via%3Dihub

T. H. Thai and R. Cogranne, “Estimation of Primary Quantization Steps in Double-Compressed JPEG Images Using a Statistical Model of Discrete Cosine Transform,” IEEE Access, vol. 7, pp. 76203–76216, 2019, [Online]. Available: https://ieeexplore.ieee.org/document/8732320

T. Y. Lee and H. W. Shen, “Efficient local statistical analysis via integral histograms with discrete wavelet transform,” IEEE Trans. Vis. Comput. Graph., vol. 19, no. 12, pp. 2693–2702, 2013, doi: 10.1109/TVCG.2013.152.

K. A. Rami Al-Hmouz, “License plate localization using a statistical analysis of Discrete Fourier Transform signal,” Comput. Electr. Eng., vol. 40, no. 3, pp. 982–992, 2014, [Online]. Available: https://www.sciencedirect.com/science/article/abs/pii/S004579061400007X?via%3Dihub

W. P. Youhong Luo, Hui Liu, Chunye Wu, Maria Paraskevaidi c, Yujie Deng, Wenjie Shi, Ye Yuan, Ruifa Feng, Francis L. Martin, “Diagnostic segregation of human breast tumours using Fourier-transform infrared spectroscopy coupled with multivariate analysis: Classifying cancer subtypes,” Spectrochim. Acta Part A Mol. Biomol. Spectrosc., vol. 255, p. 119694, 2021, [Online]. Available: https://www.sciencedirect.com/science/article/abs/pii/S1386142521002705?via%3Dihub

S. L. M. Jessica N. McCutcheon, Anthony R. Trimboli, Megan R. Pearl, Heather Brooke, Michael L. Myrick, “Diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) detection limits for blood on fabric: Orientation and coating uniformity effects,” Sci. Justice, vol. 61, no. 5, pp. 603–616, 2021, doi: https://doi.org/10.1016/j.scijus.2021.07.003.

K. R. Rao and N. Ahmed, “Orthogonal transforms for digital signal processing,” ICASSP, IEEE Int. Conf. Acoust. Speech Signal Process. - Proc., vol. 1976-April, pp. 136–140, 1976, doi: 10.1109/ICASSP.1976.1170121.

N. Ahmed and K. R. Rao, “Orthogonal Transforms for Digital Signal Processing,” Orthogonal Transform. Digit. Signal Process., 1975, doi: 10.1007/978-3-642-45450-9.

Y. A. Geadah and M. J. G. Corinthios, “Natural, Dyadic, and Sequency Order Algorithms and Processors for the Walsh-Hadamard Transform,” IEEE Trans. Comput., vol. C–26, no. 5, pp. 435–442, 1977, doi: 10.1109/TC.1977.1674860.

R. N. Boules, “Adaptive filtering using the fast Walsh-Hadamard transformation,” IEEE Trans. Electromagn. Compat., vol. 31, no. 2, pp. 125–128, 1989, doi: 10.1109/15.18779.

D. K. Rout, B. N. Subudhi, T. Veerakumar, and S. Chaudhury, “Walsh-Hadamard-Kernel-Based Features in Particle Filter Framework for Underwater Object Tracking,” IEEE Trans. Ind. Informatics, vol. 16, no. 9, pp. 5712–5722, Sep. 2020, doi: 10.1109/TII.2019.2937902.

A. Aung, “Sequency-ordered complex hadamard transforms and their applications to communications and signal processing,” PhD, Sch. EEE, Nanyang Technol. Univ. Singapore, 2009, [Online]. Available: https://dr.ntu.edu.sg/handle/10356/18688

A. Aung, B. P. Ng, and S. Rahardja, “Sequency-ordered complex Hadamard transform: Properties, computational complexity and applications,” IEEE Trans. Signal Process., vol. 56, no. 8 I, pp. 3562–3571, Aug. 2008, doi: 10.1109/TSP.2008.923195.

A. Aung and B. P. Ng, “Natural-ordered complex Hadamard transform,” Signal Processing, vol. 90, no. 3, pp. 874–879, 2010, [Online]. Available: https://www.sciencedirect.com/science/article/abs/pii/S016516840900382X?via%3Dihub

A. Aung, B. P. Ng, and S. Rahardja, “Conjugate symmetric sequency-ordered complex Hadamard transform,” IEEE Trans. Signal Process., vol. 57, no. 7, pp. 2582–2593, 2009, doi: 10.1109/TSP.2009.2017572.

F. Ohnsora, “spectral modes of the walsh-hadamard transform,” IEEE Trans. Electromagn. Compat., vol. EMC-13, no. 3, pp. 55–59, 1971, doi: 10.1109/TEMC.1971.303109.

H. X. Husheng Liu, Yinan Wang, Nan Li, “A Calibration Method for Nonlinear Mismatches in M-Channel Time-Interleaved Analog-to-Digital Converters Based on Hadamard Sequences,” Appl. Sci., vol. 6, no. 11, p. 362, 2016, doi: https://doi.org/10.3390/app6110362.

N. Ahmed, “Some considerations of the discrete Fourier and Walsh-Hadamard transforms,” Proc. 1972 IEEE Conf. Decis. Control 11th Symp. Adapt. Process. New Orleans, LA, USA, pp. 495–498, Apr. 2010, doi: 10.1109/CDC.1972.269054.

A. L. Abdussattar, “On Cyclic Autocorrelation and the Waish-Hadamard Transform,” IEEE Trans. Electromagn. Compat., vol. EMC-15, no. 3, pp. 141–146, 1973, doi: 10.1109/TEMC.1973.303280.

K. J. Ray Liu, “A Simple and Unified Proof of Dyadic Shift Invariance and the Extension to Cyclic Shift Invariance,” IEEE Trans. Educ., vol. 36, no. 4, pp. 369–372, 1993, doi: 10.1109/13.241613.

K. Revuluri, K. R. Rao, M. A. Narasimhan, and N. Ahmed, “Cyclic and Dyadic Shifts, Walsh Hadamard Transform, and the H Diagram,” IEEE Trans. Comput., vol. C–23, no. 12, pp. 1303–1306, 1974, doi: 10.1109/T-C.1974.223851.

H. Hama and K. Yamashita, “Walsh-Hadamard Power Spectra Invariant to Certain Transform Groups,” IEEE Trans. Syst. Man Cybern., vol. 9, no. 4, pp. 227–237, 1979, doi: 10.1109/TSMC.1979.4310184.

W. D. Lyle and F. Forte, “A Useful Property of the Coefficients of a Walsh-Hadamard Transform,” IEEE Trans. Acoust., vol. 28, no. 4, pp. 479–480, 1980, doi: 10.1109/TASSP.1980.1163434.

S. Barnett, “Comment on ‘A Useful Property of the Coefficients of a Walsh-Hadamard Transform,’” IEEE Trans. Acoust., vol. 29, no. 6, p. 1202, 1981, doi: 10.1109/TASSP.1981.1163690.

C. Y. Hsu and J. L. Wu, “Block-diagonal structure of Walsh-Hadamard/discrete cosine transform,” Electron. Lett., vol. 23, no. 21, pp. 1123–1124, 1987, doi: 10.1049/EL:19870783.

B. J. Falkowski, “Properties and Ways of Calculation of Multi-Polarity Generalized Walsh Transforms,” IEEE Trans. Circuits Syst. II Analog Digit. Signal Process., vol. 41, no. 6, pp. 380–391, 1994, doi: 10.1109/82.300195.

S. R. Lee and M. H. Lee, “On the reverse jacket matrix for weighted hadamard transform,” IEEE Trans. Circuits Syst. II Analog Digit. Signal Process., vol. 45, no. 3, pp. 436–441, 1998, doi: 10.1109/82.664258.

E. W. Dorin Ervin Dutkay, John Haussermann, “Spectral properties of small Hadamard matrices,” Linear Algebra Appl., vol. 506, pp. 363–381, 2016, doi: https://doi.org/10.1016/j.laa.2016.06.006.

D. O. Maria Carmela De Bonis, “Approximation of Hilbert and Hadamard transforms on (0,+∞),” Appl. Numer. Math., vol. 116, pp. 184–194, 2017, doi: https://doi.org/10.1016/j.apnum.2016.12.001.

S.-C. Pei, C.-C. Wen, and J.-J. Ding, “Sequency-ordered generalized Walsh–Fourier transform,” Signal Processing, vol. 93, no. 4, pp. 828–841, 2013, [Online]. Available: https://www.sciencedirect.com/science/article/abs/pii/S0165168412003660?via%3Dihub

G. R. Redinbo, “An Implementation Technique for Walsh Functions,” IEEE Trans. Comput., vol. C–20, no. 6, pp. 706–707, 1971, doi: 10.1109/T-C.1971.223332.

D. Sundararajan and M. O. Ahmad, “Fast computation of the discrete Walsh and Hadamard transforms,” IEEE Trans. Image Process., vol. 7, no. 6, pp. 898–904, 1998, doi: 10.1109/83.679439.

H. C. Andrews, K. L. Caspari, and H. C. Andrews, “A Generalized Technique for Spectral Analysis,” IEEE Trans. Comput., vol. C–19, no. 1, pp. 16–25, 1970, doi: 10.1109/TC.1970.5008895.

M. Cohn and A. Lempel, “On Fast M-Sequence Transforms,” IEEE Trans. Inf. Theory, vol. 23, no. 1, pp. 135–137, 1977, doi: 10.1109/TIT.1977.1055666.

G. Bi and B. G. Evans, “Hardware structure for Walsh-Hadamard transforms,” Electron. Lett., vol. 34, no. 21, pp. 2005–2006, Oct. 1998, doi: 10.1049/EL:19981425.

D. Hein and N. Ahmed, “On a Real-Time Walsh-Hadamard/Cosine Transform Image Processor,” IEEE Trans. Electromagn. Compat., vol. EMC-20, no. 3, pp. 453–457, 1978, doi: 10.1109/TEMC.1978.303679.

J. L. Wu, “Block diagonal structure in discrete transforms,” IEE Proc. E Comput. Digit. Tech., vol. 136, no. 4, pp. 239–246, 1989, doi: 10.1049/IP-E.1989.0033;WEBSITE:WEBSITE:IET-SITE;WGROUP:STRING:PUBLICATION.

J. Liang and T. D. Tran, “Fast multiplierless approximations of the DCT with the lifting scheme,” IEEE Trans. Signal Process., vol. 49, no. 12, pp. 3032–3044, Dec. 2001, doi: 10.1109/78.969511.

M. Masera, M. Martina, and G. Masera, “Adaptive Approximated DCT Architectures for HEVC,” IEEE Trans. Circuits Syst. Video Technol., vol. 27, no. 12, pp. 2714–2725, Dec. 2017, doi: 10.1109/TCSVT.2016.2595320.

P. Sharma, S. I. Ahson, and J. Henry, “Microprocessor Implementation of Fast Walsh-Hadamard Transform for Calculation of Symmetrical Components,” Proc. IEEE, vol. 76, no. 10, pp. 1385–1388, 1988, doi: 10.1109/5.16340.

S. Boussakta and A. G. J. Holt, “Fast algorithm for calculation of both Walsh-Hadamard and Fourier transforms (FWFTs),” Electron. Lett., vol. 25, no. 20, pp. 1352–1354, Sep. 1989, doi: 10.1049/EL:19890903.

J. K. Pitas and A. N. Venetsanopoulos, “Two-Dimensional Realization of Digital Filters by Transform Decomposition,” IEEE Trans. Circuits Syst., vol. 32, no. 10, pp. 1029–1040, 1985, doi: 10.1109/TCS.1985.1085623.

J. S. Soundararajan and N. B. Chakraborti, “Performance of Adaptive Filters Using Combined Lattice and Transform Techniques,” Proc. IEEE, vol. 74, no. 4, pp. 609–611, 1986, doi: 10.1109/PROC.1986.13511.

G. Péceli and B. Fehér, “Digital Filters Based on Recursive Walsh-Hadamard Transformation,” IEEE Trans. Circuits Syst., vol. 37, no. 1, pp. 150–152, 1990, doi: 10.1109/31.45706.

A. Mahalanobis, S. Song, S. K. Mitra, and M. R. Petraglia, “Adaptive FIR Filters Based On Structural Subband Decomposition for System Identification Problems,” IEEE Trans. Circuits Syst. II Analog Digit. Signal Process., vol. 40, no. 6, pp. 375–381, 1993, doi: 10.1109/82.277882.

G. Deng, “Implementation of isotropic quadratic filters usingWalsh-Hadamard transform,” Electron. Lett., vol. 31, no. 17, pp. 1422–1423, Aug. 1995, doi: 10.1049/EL:19950996.

C. F. Chan, “Efficient implementation of class of isotropicquadratic filtersby using Walsh-Hadamard transform,” Electron. Lett., vol. 35, no. 16, pp. 1306–1308, Aug. 1999, doi: 10.1049/EL:19990867.

A. Amira, A. Bouridane, P. Milligan, and M. Roula, “Novel FPGA implementations of Walsh–Hadamard transforms for signal processing,” IEE Proc. - Vision, Image Signal Process., vol. 148, no. 6, pp. 377–383, Dec. 2001, doi: 10.1049/IP-VIS:20010674.

M. H. Lee, B. Sundar Rajan, and J. Y. Park, “A generalized reverse jacket transform,” IEEE Trans. Circuits Syst. II Analog Digit. Signal Process., vol. 48, no. 7, pp. 684–690, Jul. 2001, doi: 10.1109/82.958338.

M. S. Ahmed, S. Boussakta, B. S. Sharif, and C. C. Tsimenidis, “OFDM based on low complexity transform to increase multipath resilience and reduce PAPR,” IEEE Trans. Signal Process., vol. 59, no. 12, pp. 5994–6007, Dec. 2011, doi: 10.1109/TSP.2011.2166551.

S. H. Wang, C. P. Li, K. C. Lee, and H. J. Su, “A novel low-complexity precoded OFDM system with reduced PAPR,” IEEE Trans. Signal Process., vol. 63, no. 6, pp. 1366–1376, Mar. 2015, doi: 10.1109/TSP.2015.2389751.

C. Kang, Y. Liu, M. Hu, and H. Zhang, “A low complexity PAPR reduction method based on FWFT and PEC for OFDM systems,” IEEE Trans. Broadcast., vol. 63, no. 2, pp. 416–425, Jun. 2017, doi: 10.1109/TBC.2016.2637278.

A. Khan, A. Arif, T. Nawaz, and S. Baig, “Walsh Hadamard transform based transceiver design for SC-FDMA with discrete wavelet transform,” China Commun., vol. 14, no. 5, pp. 193–206, May 2017, doi: 10.1109/CC.2017.7942326.

M. T. Hamood and S. Boussakta, “Fast Walsh–Hadamard–Fourier Transform Algorithm,” IEEE Trans. Signal Process., vol. 59, no. 11, pp. 5627–5631, 2011, [Online]. Available: https://ieeexplore.ieee.org/document/5960801

E. and Y. B. Tisserand, “Original structure for Walsh-Hadamard transform on sliding window,” Electron. Lett., vol. 51, no. 23, pp. 1850–1852, 2015, [Online]. Available: https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/el.2015.1246

B. Singer and M. M. Veloso, “Automating the modeling and optimization of the performance of signal transforms,” IEEE Trans. Signal Process., vol. 50, no. 8, pp. 2003–2014, Aug. 2002, doi: 10.1109/TSP.2002.800394.

S. Bouguezel, M. O. Ahmad, and M. N. S. Swamy, “Binary discrete cosine and hartley transforms,” IEEE Trans. Circuits Syst. I Regul. Pap., vol. 60, no. 4, pp. 989–1002, 2013, doi: 10.1109/TCSI.2012.2224751.

S. H. and M. V. R. Scheibler, “A Fast Hadamard Transform for Signals With Sublinear Sparsity in the Transform Domain,” IEEE Trans. Inf. Theory, vol. 61, no. 4, pp. 2115–2132, 2015, [Online]. Available: https://ieeexplore.ieee.org/document/7042831

N. Park and V. K. Prasanna, “Dynamic data layouts for cache-conscious implementation of a class of signal transforms,” IEEE Trans. Signal Process., vol. 52, no. 7, pp. 2120–2134, Jul. 2004, doi: 10.1109/TSP.2004.828946.

A. Thompson, “The cascading haar wavelet algorithm for computing the Walsh-Hadamard transform,” IEEE Signal Process. Lett., vol. 24, no. 7, pp. 1020–1023, Jul. 2017, doi: 10.1109/LSP.2017.2705247.

P. Marti-Puig, “A family of fast Walsh Hadamard algorithms with identical sparse matrix factorization,” IEEE Signal Process. Lett., vol. 13, no. 11, pp. 672–675, Nov. 2006, doi: 10.1109/LSP.2006.879472.

A. Iossifides and S. Louvros, “A new aspect of walsh-hadamard coding over rayleigh fading channels,” IEEE Lat. Am. Trans., vol. 10, no. 3, pp. 1680–1685, 2012, doi: 10.1109/TLA.2012.6222570.

O. U. Khan, S. Y. Chen, D. D. Wentzloff, and W. E. Stark, “Impact of compressed sensing with quantization on UWB receivers with multipath channel estimation,” IEEE J. Emerg. Sel. Top. Circuits Syst., vol. 2, no. 3, pp. 460–469, 2012, doi: 10.1109/JETCAS.2012.2222220.

N. Michailow, L. Mendes, M. Matthe, I. Gaspar, A. Festag, and G. Fettweis, “Robust WHT-GFDM for the next generation of wireless networks,” IEEE Commun. Lett., vol. 19, no. 1, pp. 106–109, Jan. 2015, doi: 10.1109/LCOMM.2014.2374181.

H. W. Jones, “A Comparison of Theoretical and Experimental Video Compression Designs,” IEEE Trans. Electromagn. Compat., vol. EMC-21, no. 1, pp. 50–56, 1979, doi: 10.1109/TEMC.1979.303797.

et al Pauchard, Y., “Fast computation of residual complexity image similarity metric using low-complexity transforms,” IET Image Process., vol. 9, no. 8, pp. 699–708, 2015, [Online]. Available: https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/iet-ipr.2014.0939

P. . Mali, B. . Chaudhuri, and D. D. Majumder, “Performance bound of Walsh-Hadamard transform for feature selection and compression and some related fast algorithms,” Pattern Recognit. Lett., vol. 2, no. 1, pp. 5–12, 1983, doi: https://doi.org/10.1016/0167-8655(83)90015-6.

T.-Y. C. Ho-Youl Jung, Rémy Prost, “A unified mathematical form of the Walsh-Hadamard transform for lossless image data compression,” Signal Processing, vol. 63, no. 1, pp. 35–43, 1997, doi: https://doi.org/10.1016/S0165-1684(97)00138-2.

and B. w. k. L. Ou, G.w., D.p.k. Lun, “Compressive sensing of images based on discrete periodic radon transform,” Electron. Lett., vol. 50, no. 8, pp. 591–593, 2014, [Online]. Available: https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/el.2014.0770

Z. Lian and M. J. Er, “Illumination normalisation for face recognition in transformed domain,” Electron. Lett., vol. 46, no. 15, pp. 1060–1061, Jul. 2010, doi: 10.1049/EL.2010.1495.

E. S. McVey and R. M. Inigo, “A Multilayered Self-Organizing Artificial Neural Network for Invariant Pattern Recognition,” IEEE Trans. Knowl. Data Eng., vol. 4, no. 2, pp. 162–167, 1992, doi: 10.1109/69.134253.

M. K. K. Santi P. Maity, “Perceptually adaptive spread transform image watermarking scheme using Hadamard transform,” Inf. Sci. (Ny)., vol. 181, no. 3, pp. 450–465, 2011, doi: https://doi.org/10.1016/j.ins.2010.09.029.

Y. Ishikawa, K. Uehira, and K. Yanaka, “Optimization of size of pixel blocks for orthogonal transform in optical watermarking technique,” IEEE/OSA J. Disp. Technol., vol. 8, no. 9, pp. 505–510, 2012, doi: 10.1109/JDT.2012.2201133.

S. Z. Le Wang, Li Zou, “Edge detection based on subpixel-speckle-shifting ghost imaging,” Opt. Commun., vol. 407, pp. 181–185, 2018, doi: https://doi.org/10.1016/j.optcom.2017.09.002.

A. E. and W. B. F. Shum, “Speech processing with Walsh-Hadamard transforms,” IEEE Trans. Audio Electroacoust., vol. 21, no. 3, pp. 174–179, 1973, doi: 10.1109/TAU.1973.1162475.

J. Pearl, “Application of Walsh Transform to Statistical Analysis,” IEEE Trans. Syst. Man. Cybern., vol. 1, no. 2, pp. 111–119, 1971, [Online]. Available: https://ieeexplore.ieee.org/document/4308267

P. Yip and K. Rao, “Energy Packing Efficiency for the Generalized Discrete Transforms,” IEEE Trans. Commun., vol. 26, no. 8, pp. 1257–1262, 1978, doi: 10.1109/TCOM.1978.1094199.

H. Burkhardt and X. Muller, “On invariant sets of a certain class of fast translation-invariant transforms,” IEEE Trans. Acoust., vol. 28, no. 5, pp. 517–523, 1980, [Online]. Available: https://ieeexplore.ieee.org/document/1163439

B. Arambepola and K.C. Partington, “Walsh-Hadamard transform for complex-valued signals,” Electron. Lett., vol. 28, no. 3, 1992, doi: https://doi.org/10.1049/el:19920160.

L. and Z. P. Dong, “Fast motion estimation algorithm using multilevel distortion search in Walsh-Hadamard domain,” IET Image Process., vol. 11, no. 1, pp. 22–30, 2017, [Online]. Available: https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/iet-ipr.2016.0453

P. W. Besslich, “Determination of the irredundant forms of a Boolean function using Walsh-Hadamard analysis and dyadic groups,” IEE J. Comput. Digit. Tech., vol. 1, no. 4, pp. 143–151, 1978, doi: 10.1049/IJ-CDT.1978.0041.

N. Ahmed and K. Rao, “Additional properties of complex BIFORE transform,” IEEE Trans. Audio Electroacoust., vol. 19, no. 3, pp. 252–253, 1971, doi: 10.1109/TAU.1971.1162190.

S. Rahardja and B. J. Falkowski, “Family of unified complex Hadamard transforms,” IEEE Trans. Circuits Syst. II Analog Digit. Signal Process., vol. 46, no. 8, pp. 1094–1100, 1999, [Online]. Available: https://ieeexplore.ieee.org/document/782059

S. Rahardja and B. J. Falkowski, “Family of complex Hadamard transforms: relationship with other transforms and complex composite spectra,” Proc. Int. Symp. Mult. Log., pp. 125–130, 1997, doi: 10.1109/ISMVL.1997.601386.

B. J. Falkowski and S. Rahardja, “Properties and applications of unified complex Hadamard transforms,” Proc. Int. Symp. Mult. Log., pp. 131–136, 1997, doi: 10.1109/ISMVL.1997.601387.

B. J. Falkowski, “Family of generalised multi-polaritycomplex Hadamard transforms,” IEE Proc. - Vision, Image Signal Process., vol. 145, no. 6, pp. 371–378, Dec. 1998, doi: 10.1049/IP-VIS:19982461.

S. Rahardja and B. J. Falkowski, “Complex composite spectra of Unified Complex Hadamard transform for logic functions,” IEEE Trans. Circuits Syst. II Analog Digit. Signal Process., vol. 47, no. 11, pp. 1291–1296, Nov. 2000, doi: 10.1109/82.885135.

S. Rahardja, W. Ser, and Z. Lin, “UCHT-based complex sequences for asynchronous CDMA system,” IEEE Trans. Commun., vol. 51, no. 4, pp. 618–626, Apr. 2003, doi: 10.1109/TCOMM.2003.810798.

S. Xie and S. Rahardja, “Performance evaluation for quaternary DS-SSMA communications with complex signature sequences over Rayleigh-fading channels,” IEEE Trans. Wirel. Commun., vol. 4, no. 1, pp. 266–277, Jan. 2005, doi: 10.1109/TWC.2004.840203.

S. Xie, S. Rahardja, and Z. Gu, “Performance of DS-CDMA downlink systems with orthogonal UCHT complex sequences,” IEEE Trans. Commun., vol. 55, no. 2, pp. 251–256, 2007, doi: 10.1109/TCOMM.2006.888524.

A. Aung, B. P. Ng, and S. Rahardja, “Performance of SCHT sequences in asynchronous CDMA system,” IEEE Commun. Lett., vol. 11, no. 8, pp. 641–643, Aug. 2007, doi: 10.1109/LCOMM.2007.070407.

G. Bi, A. Aung, and B. Poh Ng, “Pipelined hardware structure for sequency-ordered complex hadamard transform,” IEEE Signal Process. Lett., vol. 15, pp. 401–404, 2008, doi: 10.1109/LSP.2008.922515.

A. Aung, B. P. Ng, and S. Rahardja, “A robust watermarking scheme using sequency-ordered complex hadamard transform,” J. Signal Process. Syst., vol. 64, no. 3, pp. 319–333, May 2011, doi: 10.1007/S11265-010-0492-7/METRICS.

J. Wu, H. Shu, L. Wang, and L. Senhadji, “Fast algorithms for the computation of sliding sequency-ordered complex hadamard transform,” IEEE Trans. Signal Process., vol. 58, no. 11, pp. 5901–5909, 2010, doi: 10.1109/TSP.2010.2063026.

N. Swetha, P. N. Sastry, Y. R. Rao, and S. L. Sabat, “Fast Sequency-Ordered Complex Hadamard Transform-Based Parzen Window Entropy Detection for Spectrum Sensing in Cognitive Radio Networks,” IEEE Commun. Lett., vol. 20, no. 7, pp. 1401–1404, Jul. 2016, doi: 10.1109/LCOMM.2016.2548466.

V. S. Padmavathi Kora, Ambika Annavarapu, Priyanka Yadlapalli, K. Sri Rama Krishna, “ECG based Atrial Fibrillation detection using Sequency Ordered Complex Hadamard Transform and Hybrid Firefly Algorithm,” Eng. Sci. Technol. an Int. J., vol. 20, no. 3, pp. 1084–1091, 2017, [Online]. Available: https://www.sciencedirect.com/science/article/pii/S221509861630684X

L. S. and H. S. J. Wu, L. Wang, “Sliding conjugate symmetric sequency-ordered complex hadamard transform: Fast algorithm and applications,” 2010 18th Eur. Signal Process. Conf. Aalborg, Denmark, pp. 1742–1746, 2010, [Online]. Available: https://ieeexplore.ieee.org/document/7096450

S. C. Pei, C. C. Wen, and J. J. Ding, “Conjugate symmetric discrete orthogonal transform,” IEEE Trans. Circuits Syst. II Express Briefs, vol. 61, no. 4, pp. 284–288, 2014, doi: 10.1109/TCSII.2014.2305011.

S. Kyochi and Y. Tanaka, “General Factorization of Conjugate-Symmetric Hadamard Transforms,” IEEE Trans. Signal Process., vol. 62, no. 13, pp. 3379–3392, 2014, [Online]. Available: https://ieeexplore.ieee.org/document/6820782

D. Jabeen, G. Monir, and F. Azim, “Sequency Domain Signal Processing Using Complex Hadamard Transform,” Circuits, Syst. Signal Process., vol. 35, no. 5, pp. 1783–1793, May 2016, doi: 10.1007/S00034-015-0138-X/METRICS.

D. and G. M. Jabeen, “Two-dimensional spatiochromatic signal processing using concept of phasors in sequency domain,” Electron. Lett., vol. 52, no. 11, pp. 968–970, 2016, [Online]. Available: https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/el.2016.0059

M. F. K. Dure Jabeen, T.I., “Multidimensional signal processing using quaternion complex Hadamard transform in sequency domain,” Electron. Lett., vol. 54, no. 25, pp. 1435–1436, 2018, [Online]. Available: https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/el.2018.6548

J. Wu et al, “Fast Gray Code Kernel Algorithm for the Sliding Conjugate Symmetric Sequency-Ordered Complex Hadamard Transform,” IEEE Access, vol. 6, pp. 56029–56045, 2018, doi: 10.1109/ACCESS.2018.2871885.

D. Jabeen, S. M. G. Monir, S. Noor, M. Rafiullah, and M. A. Jatoi, “Color image watermarking using spatio-chromatic complex Hadamard transform in sequency domain,” World J. Eng., vol. 19, no. 5, pp. 658–666, Aug. 2022, doi: 10.1108/WJE-03-2021-0176/FULL/XML.

C. H. C. Heng, I., “Error correcting codes associated with complex Hadamard matrices,” Appl. Math. Lett., vol. 11, no. 4, pp. 77–80, 1998, doi: https://doi.org/10.1016/S0893-9659(98)00059-7.

S. Rahardja and B. J. Falkowski, “Symmetry conditions of Boolean functions incomplex Hadamard transform,” Electron. Lett., vol. 34, no. 17, pp. 1634–1635, Aug. 1998, doi: 10.1049/EL:19981164.

L. L. Bin Wang , Jiasong Wu, Huazhong Shu, “Shape description using sequency-ordered complex Hadamard transform,” Opt. Commun., vol. 284, no. 12, pp. 2726–2729, 2011, doi: https://doi.org/10.1016/j.optcom.2011.01.061.

P. R. J. Ö. Pekka H.J. Lampio, Ferenc Szöllősi, “The quaternary complex Hadamard matrices of orders 10, 12, and 14,” Discrete Math., vol. 313, no. 2, pp. 189–206, 2013, [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0012365X12004384

J. Liu, Q. Xing, X. Yin, X. Mao, and F. Yu, “Pipelined Architecture for a Radix-2 Fast Walsh-Hadamard-Fourier Transform Algorithm,” IEEE Trans. Circuits Syst. II Express Briefs, vol. 62, no. 11, pp. 1083–1087, Nov. 2015, doi: 10.1109/TCSII.2015.2456371.

Bengt R. Karlsson, “Three-parameter complex Hadamard matrices of order 6,” Linear Algebra Appl., vol. 434, pp. 247–258, 2011, doi: https://doi.org/10.1016/j.laa.2010.08.020.

K. Meenakshi, K. Satya Prasad, and C. Srinivasa Rao, “Development of Low-Complexity Video Watermarking with Conjugate Symmetric Sequency-Complex Hadamard Transform,” IEEE Commun. Lett., vol. 21, no. 8, pp. 1779–1782, Aug. 2017, doi: 10.1109/LCOMM.2017.2700461.

M. H. L. and Y. J. H. Hai, X. -Q. Jiang, W. Duan, J. Li, “Complex Hadamard Matrix-Aided Generalized Space Shift Keying Modulation,” IEEE Access, vol. 5, pp. 21139–21147, 2017, doi: 10.1109/ACCESS.2017.2758269.

Ferenc Szöllősi, “Parametrizing complex Hadamard matrices,” Eur. J. Comb., vol. 29, no. 5, pp. 1219–1234, 2008, doi: https://doi.org/10.1016/j.ejc.2007.06.009.

Ferenc Szöllősi, “Complex Hadamard matrices and equiangular tight frames,” Linear Algebra Appl., vol. 438, no. 4, pp. 1962–1967, 2013, doi: https://doi.org/10.1016/j.laa.2011.05.034.

J.-M. S. Gaurush Hiranandani, “Small circulant complex Hadamard matrices of Butson type,” Eur. J. Comb., vol. 51, pp. 306–314, 2016, doi: https://doi.org/10.1016/j.ejc.2015.05.010.

Z.-C. Fan, D. Li, and S. Rahardja, “Efficient Computation for Discrete Fractional Hadamard Transform,” IEEE Trans. Circuits Syst. I Regul. Pap., pp. 1–9, Aug. 2024, doi: 10.1109/TCSI.2024.3441834.

R. Bomfin and M. Chafii, “Sparse-DFT and WHT Precoding with Iterative Detection for Highly Frequency-Selective Channels,” IEEE Trans. Wirel. Commun., vol. 23, no. 5, pp. 4083–4096, May 2024, doi: 10.1109/TWC.2023.3314075.

H. Pan, E. Hamdan, X. Zhu, S. Atici, and A. E. Cetin, “Multichannel Orthogonal Transform-Based Perceptron Layers for Efficient ResNets,” IEEE Trans. Neural Networks Learn. Syst., 2024, doi: 10.1109/TNNLS.2024.3384316.

Downloads

Published

2025-05-14

How to Cite

Dure Jabeen, Tahimna Khan, S. M. Ghazanfar Monir, Dilbar Hussain, & Rumaisa Iftikhar. (2025). A Comprehensive Toolset for Signal Processing using a Family of Hadamard Transforms. International Journal of Innovations in Science & Technology, 7(2), 770–801. Retrieved from https://journal.50sea.com/index.php/IJIST/article/view/1360

Issue

Section

Articles