A Computational Simulation of Fractional Advection-Diffusion Model Using Differential Quadrature and Local Radial Basis Functions
Keywords:
Caputo fractional derivative, Differential quadrature, Backward difference formula, Fractional Advection-Diffusion equation, Radial basis functionsAbstract
This article presents a local radial basis function-based differential quadrature method for solving the time-fractional advection-diffusion equation. Backward difference formula is utilized to approximate Caputo fractional derivative. Differential quadrature approach is employed to compute the space derivatives by 3-point central scheme in the neighborhood of a node. Two types of radial basis functions are utilized in numerical simulations. Accuracy and computational efficiency of proposed technique is assessed via , error norms, fractional order, time and spatial step sizes, rate of convergence and execution time. Three nonhomogeneous test problems are solved to validate the method, and the results are compared with finite volume method to show its superiority.
References
“Theory and applications Of Fractinal Differential Equations | Request PDF.” Accessed: May 19, 2025. [Online]. Available: https://www.researchgate.net/publication/216225153_Theory_and_applications_Of_Fractinal_Differential_Equations
Z. Z. Yunying Zheng, Changpin Li, “A note on the finite element method for the space-fractional advection diffusion equation,” Comput. Math. with Appl., vol. 59, no. 5, pp. 1718–1726, 2010, doi: https://doi.org/10.1016/j.camwa.2009.08.071.
Ercília Sousa, “A second order explicit finite difference method for the fractional advection diffusion equation,” Comput. Math. with Appl., vol. 64, no. 10, pp. 3141–3152, 2012, doi: https://doi.org/10.1016/j.camwa.2012.03.002.
S. A. T. Algazaa and J. Saeidian, “Spectral methods utilizing generalized Bernstein-like basis functions for time-fractional advection–diffusion equations,” Math. Methods Appl. Sci., vol. 48, no. 2, pp. 1411–1429, Jan. 2024, doi: 10.1002/MMA.10390;PAGE:STRING:ARTICLE/CHAPTER.
M. W. Harbir Antil, Thomas Brown, Ratna Khatri, Akwum Onwunta, Deepanshu Verma, “Chapter 3 - Optimal control, numerics, and applications of fractional PDEs,” Handb. Numer. Anal., vol. 23, pp. 87–114, 2022, doi: https://doi.org/10.1016/bs.hna.2021.12.003.
E.J. Kansa, “Multiquadrics—A scattered data approximation scheme with applications to computational fluid-dynamics—I surface approximations and partial derivative estimates,” Comput. Math. with Appl., vol. 19, no. 8–9, pp. 127–145, 1990, doi: https://doi.org/10.1016/0898-1221(90)90270-T.
S. H. Siraj-ul-Islam, Arshed Ali, “A computational modeling of the behavior of the two-dimensional reaction–diffusion Brusselator system,” Appl. Math. Model., vol. 34, no. 12, pp. 3896–3909, 2010, doi: https://doi.org/10.1016/j.apm.2010.03.028.
M. Dehghan and A. Shokri, “A meshless method for numerical solution of the one-dimensional wave equation with an integral condition using radial basis functions,” Numer. Algorithms, vol. 52, no. 3, pp. 461–477, Oct. 2009, doi: 10.1007/S11075-009-9293-0/METRICS.
A. A. Iltaf Hussain, Safyan Mukhtar and, “A Numerical Meshless Technique for the Solution of the two Dimensional Burger’s Equation Using Collocation Method,” World Appl. Sci. J., vol. 23, no. 12, pp. 29–40, 2013, doi: 10.5829/idosi.wasj.2013.23.12.2840.
A. Ali, F. Haq, I. Hussain, and U. Shah, “A meshless method of lines for numerical solution of some coupled nonlinear evolution equations,” Int. J. Nonlinear Sci. Numer. Simul., vol. 15, no. 2, pp. 121–128, Mar. 2014, doi: 10.1515/IJNSNS-2012-0035/MACHINEREADABLECITATION/RIS.
J. Lin, J. Bai, S. Reutskiy, and J. Lu, “A novel RBF-based meshless method for solving time-fractional transport equations in 2D and 3D arbitrary domains,” Eng. Comput., vol. 39, no. 3, pp. 1905–1922, Jun. 2023, doi: 10.1007/S00366-022-01601-0/METRICS.
Q. X. Luchuan Shi, “Application of Generalized Finite Difference Method and Radial Basis Function Neural Networks in Solving Inverse Problems of Surface Anomalous Diffusion,” Math. Comput. Appl, vol. 30, no. 1, p. 7, 2025, doi: https://doi.org/10.3390/mca30010007.
R. Bellman and J. Casti, “Differential quadrature and long-term integration,” J. Math. Anal. Appl., vol. 34, no. 2, pp. 235–238, 1971, doi: https://doi.org/10.1016/0022-247X(71)90110-7.
Siraj-Ul-Islam, A. Ali, A. Zafar, and I. Hussain, “A Differential Quadrature Based Approach for Volterra Partial Integro-Differential Equation with a Weakly Singular Kernel,” Comput. Model. Eng. Sci., vol. 124, no. 3, pp. 915–935, Aug. 2020, doi: 10.32604/CMES.2020.011218.
T. A. Imtiaz Ahmad, Mehwish Saleem, Arshed Ali, Aziz Khan, “A Computational Analysis of Convection-Diffusion Model with Memory using Caputo-Fabrizio Derivative and Cubic Trigonometric B-Spline Functions,” Eur. J. Pure Appl. Math., vol. 18, no. 2, 2025, [Online]. Available: https://www.ejpam.com/index.php/ejpam/article/view/6186
C. Shu, H. Ding, and K. . Yeo, “Local radial basis function-based differential quadrature method and its application to solve two-dimensional incompressible Navier–Stokes equations,” Comput. Methods Appl. Mech. Eng., vol. 192, no. 7–8, pp. 941–954, 2003, doi: https://doi.org/10.1016/S0045-7825(02)00618-7.
X. G. Zhu, Y. F. Nie, Z. H. Ge, Z. B. Yuan, and J. G. Wang, “A class of RBFs-based DQ methods for the space-fractional diffusion equations on 3D irregular domains,” Comput. Mech., vol. 66, no. 1, pp. 221–238, Jul. 2020, doi: 10.1007/S00466-020-01848-8/METRICS.
I. Ahmad, A. R. Seadawy, H. Ahmad, P. Thounthong, and F. Wang, “Numerical study of multi-dimensional hyperbolic telegraph equations arising in nuclear material science via an efficient local meshless method,” Int. J. Nonlinear Sci. Numer. Simul., vol. 23, no. 1, pp. 115–122, Feb. 2022, doi: 10.1515/IJNSNS-2020-0166/MACHINEREADABLECITATION/RIS.
M. V. Abdol Mahdi Behroozi, Claudio I. Meier, “Radial basis function-based differential quadrature for dam break problems,” Eng. Anal. Bound. Elem., vol. 155, pp. 307–322, 2023, doi: https://doi.org/10.1016/j.enganabound.2023.06.020.
B. Almutairi, I. Ahmad, B. Almohsen, H. Ahmad, and D. U. Ozsahin, “NUMERICAL SIMULATIONS OF TIME-FRACTIONAL PDES ARISING IN MATHEMATICS AND PHYSICS USING THE LOCAL MESHLESS DIFFERENTIAL QUADRATURE METHOD,” Therm. Sci., vol. 27, no. Special Issue 1, pp. 263–272, 2023, doi: 10.2298/TSCI23S1263A.
N. Biranvand and A. Ebrahimijahan, “Utilizing differential quadrature-based RBF partition of unity collocation method to simulate distributed-order time fractional Cable equation,” Comput. Appl. Math., vol. 43, no. 1, pp. 1–26, Feb. 2024, doi: 10.1007/S40314-023-02507-3/METRICS.
S. Lv, D. Li, W. Zha, and Y. Xing, “Physics-informed radial basis function neural network for efficiently modeling oil-water two-phase Darcy flow,” Phys. Fluids, vol. 37, no. 1, Jan. 2025, doi: 10.1063/5.0249560/3329262.
M. Badr, A. Yazdani, and H. Jafari, “Stability of a finite volume element method for the time-fractional advection-diffusion equation,” Numer. Methods Partial Differ. Equ., vol. 34, no. 5, pp. 1459–1471, Sep. 2018, doi: 10.1002/NUM.22243.
A. V. K. and L. J. SWAPNALI DOLEY, “UPWIND SCHEME OF CAPUTO TIME FRACTIONAL ADVECTION DIFFUSION EQUATION,” Adv. Appl. Math. Sci., vol. 21, no. 3, pp. 1239–1247, 2022, [Online]. Available: https://www.mililink.com/upload/article/1223602015aams_vol_213_january_2022_a14_p1239-1247_swapnali_doley,_a._vanav_kumar_and_l._jino.pdf
Y. E. Aghdam, H. Mesgarani, and Z. Asadi, “Estimate of the fractional advection-diffusion equation with a time-fractional term based on the shifted Legendre polynomials,” J. Math. Model., vol. 11, no. 4, pp. 731–744, Dec. 2023, doi: 10.22124/JMM.2023.24479.2191.
K. S. N. Sh. Ahmed, Sh. Jahan, “Haar wavelet based numerical technique for the solutions of fractional advection diffusion equations,” J. Math. Comput. Sci, vol. 34, no. 3, pp. 217--233, 2024, doi: https://dx.doi.org/10.22436/jmcs.034.03.02.
S. Kumar, K. Kumar, R. K. Pandey, and Y. Xu, “Legendre collocation method for new generalized fractional advection-diffusion equation,” Int. J. Comput. Math., Oct. 2024, doi: 10.1080/00207160.2024.2305640;REQUESTEDJOURNAL:JOURNAL:GCOM20;SUBPAGE:STRING:ACCESS.
Z. Odibat, “Approximate analytical solutions of time-fractional advection–diffusion equations using singular kernel derivatives: a comparative study,” Nonlinear Dyn., vol. 113, no. 13, pp. 16427–16442, Jul. 2025, doi: 10.1007/S11071-025-10991-X/METRICS.
S. Arshed, “B-spline solution of fractional integro partial differential equation with a weakly singular kernel,” Numer. Methods Partial Differ. Equ., vol. 33, no. 5, pp. 1565–1581, Sep. 2017, doi: 10.1002/NUM.22153.

Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 50SEA

This work is licensed under a Creative Commons Attribution 4.0 International License.