Facial Recognition Attendance System

Authors

  • Javed Oad Quaid-e-Awam University of Engineering, Sciences & Technology
  • Erum Afridi Quaid-e-Awam University of Engineering, Science and Technology, Nawabshah
  • Mir Alam Bhatti Quaid-e-Awam University of Engineering, Science and Technology, Nawabshah
  • Bakhtiar Ali Quaid-e-Awam University of Engineering, Science and Technology, Nawabshah
  • Lubna Tariq Quaid-e-Awam University of Engineering, Science and Technology, Nawabshah
  • Saira Soomro Quaid-e-Awam University of Engineering, Science and Technology, Nawabshah
  • Allah Wasayo Malik Quaid-e-Awam University of Engineering, Science and Technology, Nawabshah

Keywords:

Facial Recognition, Class Attendance System, Local Binary Pattern Histogram (Lbph), Attendance Updating, Faculty Notification

Abstract

Facial recognition technology is increasingly being used to enhance automation in various sectors like education. This paper presents the development of a class attendance system that leverages facial recognition to address limitations in traditional manual attendance methods, such as time consumption and susceptibility to proxy attendance.

This proposed system comprises four main stages: database creation, face detection, face recognition, and attendance updating. A database of student images is ready, after which Haar-Cascade classifiers and Local Binary Pattern Histogram (LBPH) algorithms are used for face detection and recognition in real-time classroom video streams. then The system automatically records attendance and forwards the data to faculty members at the end of each session.

References

M. S. Khawla Alhanaee, Mitha Alhammadi, Nahla Almenhali, “Face Recognition Smart Attendance System using Deep Transfer Learning,” Procedia Comput. Sci., vol. 192, pp. 4093–4102, 2021, doi: https://doi.org/10.1016/j.procs.2021.09.184.

S. Lukas, A. R. Mitra, R. I. Desanti, and D. Krisnadi, “Student attendance system in classroom using face recognition technique,” 2016 Int. Conf. Inf. Commun. Technol. Converg. ICTC 2016, pp. 1032–1035, Nov. 2016, doi: 10.1109/ICTC.2016.7763360.

S. . Satheeskumaran, Y. Zhang, V. E. Balas, T. Hong, and D. Pelusi, “Intelligent computing for sustainable development : first International Conference, ICICSD 2023, Hyderabad, India, August 25-26, 2023, revised selected papers. Part I,” 2024.

A. Bejo, R. Winata, and S. S. Kusumawardani, “Prototyping of Class-Attendance System Using Mifare 1K Smart Card and Raspberry Pi 3,” ISESD 2018 - Int. Symp. Electron. Smart Devices Smart Devices Big Data Anal. Mach. Learn., Jan. 2019, doi: 10.1109/ISESD.2018.8605442.

S. Y. Yi, M. I. Nordin, and M. T. A. Seman, “Face Recognition Attendance Management System (FRAMS) Algorithm Using CNN Model,” Lect. Notes Electr. Eng., vol. 1123 LNEE, pp. 391–397, 2024, doi: 10.1007/978-981-99-9005-4_49.

S. Dev and T. Patnaik, “Student Attendance System using Face Recognition,” Proc. - Int. Conf. Smart Electron. Commun. ICOSEC 2020, pp. 90–96, Sep. 2020, doi: 10.1109/ICOSEC49089.2020.9215441.

R. Hartanto and M. N. Adji, “Face recognition for attendance system detection,” Proc. 2018 10th Int. Conf. Inf. Technol. Electr. Eng. Smart Technol. Better Soc. ICITEE 2018, pp. 376–381, Nov. 2018, doi: 10.1109/ICITEED.2018.8534942.

S. Lukas, A. R. Mitra, R. I. Desanti, and D. Krisnadi, “Student attendance system in classroom using face recognition technique,” 2016 Int. Conf. Inf. Commun. Technol. Converg. ICTC 2016, pp. 1032–1035, Nov. 2016, doi: 10.1109/ICTC.2016.7763360.

Z. Xu, P. Chen, W. Zhang, X. Liu, and H. Wu, “Research on mobile phone attendance positioning system based on campus network,” Proc. - 2019 Int. Conf. Smart Grid Electr. Autom. ICSGEA 2019, pp. 387–389, Aug. 2019, doi: 10.1109/ICSGEA.2019.00094.

G. Sittampalam and N. Ratnarajah, “SAMS: An IoT Solution for Attendance Management in Universities,” IEEE Reg. 10 Annu. Int. Conf. Proceedings/TENCON, vol. 2019-October, pp. 251–256, Oct. 2019, doi: 10.1109/TENCON.2019.8929616.

N. V. V. R. Reddy, V. B. Reddy, K. M. Reddy, S. K. Pyla, and R. D. Reddy, “Cloud Based Attendance Management System Using Face Recognition with Haar Cascade Classifier and CNN,” Commun. Comput. Inf. Sci., vol. 2121 CCIS, pp. 136–151, 2024, doi: 10.1007/978-3-031-61287-9_11.

Ghalib Al-Muhaidhri, “Smart Attendance System using Face Recognition,” Int. J. Eng. Res., vol. V8, no. 12, Dec. 2019, doi: 10.17577/IJERTV8IS120046.

O. A. R. Salim, R. F. Olanrewaju, and W. A. Balogun, “Class Attendance Management System Using Face Recognition,” Proc. 2018 7th Int. Conf. Comput. Commun. Eng. ICCCE 2018, pp. 93–98, Nov. 2018, doi: 10.1109/ICCCE.2018.8539274.

K. Alhanaee, M. Alhammadi, N. Almenhali, and M. Shatnawi, “Face Recognition Smart Attendance System using Deep Transfer Learning,” Procedia Comput. Sci., vol. 192, pp. 4093–4102, Jan. 2021, doi: 10.1016/J.PROCS.2021.09.184.

R. Muthunagai, D. Muruganandhan, and P. Rajasekaran, “Classroom Attendance Monitoring Using CCTV,” 2020 Int. Conf. Syst. Comput. Autom. Networking, ICSCAN 2020, Jul. 2020, doi: 10.1109/ICSCAN49426.2020.9262436.

Downloads

Published

2025-05-25

How to Cite

Oad, J., , E. A., Mir Alam Bhatti, Bakhtiar Ali, Lubna Tariq, Saira Soomro, & Allah Wasayo Malik. (2025). Facial Recognition Attendance System. International Journal of Innovations in Science & Technology, 7(6), 196–203. Retrieved from https://journal.50sea.com/index.php/IJIST/article/view/1377