Thermal Macro-Modeling and Safe Operating Area Analysis of MOSFETs
Keywords:
Thermal Modeling, Power Electronics Circuits, Ltspice, Safe Operating Area, MosfetsAbstract
Thermal dissipation in electronic circuits is always an important design constraint. Excessive heat can degrade component performance, reduce lifespan, and in severe cases, cause permanent failure. This paper uses the thermal modeling approach at the circuit level and focuses on the Safe Operating Area (SOA) of MOSFETs (Metal-Oxide-Semiconductor Field-Effect Transistors). The SOA defines the operational limits of MOSFETs by considering the power dissipation to prevent thermal runaway and device failure. In the area of power electronics, it is important to ensure the reliability and efficiency of circuits under different thermal conditions. In this paper, the thermal behavior of MOSFETs is modeled considering factors such as ambient temperature, gate capacitance, PCB (printed circuit board) thermal dissipation, and heatsink addition. This research highlights the importance of thermal design principles in predicting the junction and case temperatures of MOSFETs under various operating conditions. This systematic approach to thermal macro-modeling is crucial for optimizing the performance and reliability of electronic circuits, particularly in high-power applications where thermal management is a critical concern.
References
S. Yin, T. Wang, K. J. Tseng, J. Zhao, and X. Hu, “Electro-thermal modeling of SiC power devices for circuit simulation,” IECON Proc. (Industrial Electron. Conf., pp. 718–723, 2013, doi: 10.1109/IECON.2013.6699223.
D. P. Nayak and S. K. Pramanick, “Implementation of an Electro-Thermal Model for Junction Temperature Estimation in a SiC MOSFET Based DC/DC Converter,” CPSS Trans. Power Electron. Appl., vol. 8, no. 1, pp. 42–53, Mar. 2023, doi: 10.24295/CPSSTPEA.2023.00005.
Z. Zhang, L. Liang, and H. Fei, “Investigation on safe-operating-area degradation and failure modes of SiC MOSFETs under repetitive short-circuit conditions,” Power Electron. Devices Components, vol. 4, p. 100026, Mar. 2023, doi: 10.1016/J.PEDC.2022.100026.
H. Xu, X. Li, and C. Yang, “Thermal Stability Analysis of SiC MOSFET Power Modules,” 2024 IEEE Int. Conf. Mechatronics Autom. ICMA 2024, pp. 1280–1285, 2024, doi: 10.1109/ICMA61710.2024.10632947.
S. Singh, J. Proulx, and A. Vass-Varnai, “Measuring the RthJC of Power Semiconductor Components Using Short Pulses,” 2021 27th Int. Work. Therm. Investig. ICs Syst. THERMINIC 2021, 2021, doi: 10.1109/THERMINIC52472.2021.9626498.
“Radiation - Surface Emissivity Coefficients.” Accessed: Jun. 30, 2025. [Online]. Available: https://www.engineeringtoolbox.com/radiation-heat-emissivity-d_432.html
K. Heng, X. Yang, X. Wu, J. Ye, and G. Liu, “A Temperature-Dependent Physical Thermal Network Model Including Thermal Boundary Conditions for SiC MOSFET Module,” IEEE Trans. Electron Devices, vol. 69, no. 8, pp. 4444–4452, Aug. 2022, doi: 10.1109/TED.2022.3185951.
D. P. U. Tran, S. Lefebvre, and Y. Avenas, “Discrete power semiconductor losses versus junction temperature estimation based on thermal impedance curves,” IEEE Trans. Components, Packag. Manuf. Technol., vol. 10, no. 1, pp. 79–87, Jan. 2020, doi: 10.1109/TCPMT.2019.2939617.
L. ROHM Co., “Thermal design in four steps for power devices,” ROHM.
D. Schweitzer, H. Pape, L. Chen, R. Kutscherauer, and M. Walder, “Transient dual interface measurement - A new JEDEC standard for the measurement of the junction-to-case thermal resistance,” Annu. IEEE Semicond. Therm. Meas. Manag. Symp., pp. 222–229, 2011, doi: 10.1109/STHERM.2011.5767204.
Infineon Technologies, “IPP_B_I_200N25N3_G - Power MOSFET Data Sheet,” 2016, [Online]. Available: https://www.infineon.com/dgdl/Infineon-IPP_B_I_200N25N3_G-DataSheet-v02_05-EN.pdf?fileId=db3a3043243b5f17012496b87e9f1971
I. A. Technologies, “Application note Dynamic thermal behavior of MOSFETs - simulation and calculation of high power pulses”, Accessed: Jul. 01, 2025. [Online]. Available: www.infineon.com
X. Chen et al., “Steady-state over-current safe operation area (SOA) of the SiC MOSFET at cryogenic and room temperatures,” Cryogenics (Guildf)., vol. 122, p. 103424, Mar. 2022, doi: 10.1016/J.CRYOGENICS.2022.103424.
Z. Ma et al., “Characterization of Electro-Thermal Coupling Behaviors and Safe Operating Area of SiC MOSFET Modules in Pulsed Power Applications,” IEEE Trans. Power Electron., vol. 39, no. 9, pp. 11217–11231, 2024, doi: 10.1109/TPEL.2024.3409540.

Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 50sea

This work is licensed under a Creative Commons Attribution 4.0 International License.