MODIS-Observed Spatiotemporal Changes in Surface Albedo of Karakoram Glaciers During 2000-2018


  • Zaeem Hassan Akhter School of Geography and Ocean Science, Nanjing University, Nanjing, China
  • Chang-Qing Ke School of Geography and Ocean Science, Nanjing University, Nanjing, China
  • Irfan Ahmed Soomro School of Geography and Ocean Science, Nanjing University, Nanjing, China
  • Asma Amir School of Geographical Science,Northeast Normal University, Changchun, China


MODIS, surface albedo, glacier, climate factors, Karakoram


The role of albedo is very important in modulating the surface energy balance of glaciers. The main objective of this study is to assess the spatiotemporal variability in surface albedo of the Karakoram glaciers in Pakistan during the summer seasons (June, July and August) for the period from 2000-2018. We used Moderate Resolution Imaging Spectroradiometer (MODIS) data to estimate the amount of glacier surface albedo. We combined the MODIS Terra- and Aqua-derived albedo products to reduce the amount of cloud influence and to improve the estimation of glacier surface albedo. Our results indicate that the average annual decrease in albedo is ~0.041% during the summer. The decrease in albedo was relatively high during recent years, with an annual rate of decrease of ~0.45%. The decreasing trend in albedo is towards the north-western part of the Karakoram mountain range. Climate change is the potential cause of albedo variations in the study area. Albedo has a strong negative correlation with temperature (r = -0.811) and a strong positive correlation with precipitation (r = 0.809). The present study concludes that trend in decreasing albedo is higher during the recent years than the last decade and climate change is playing a vital role in it.

Text Full


“Global Climate Change, Melting Glaciers.” (accessed Mar. 08, 2022).

S. Kazlowski and T. Roosevelt, “The last polar bear : facing the truth of a warming world : a photographic journey,” p. 207, 2008, Accessed: Mar. 08, 2022. [Online]. Available:

K. Casey, “The coming chaos : fossil fuel depletion and global warming,” p. 208.

“Randolph Glacier Inventory-A Dataset of Global Glacier Outlines: Version 6.0,” 2017.

D. Farinotti et al., “A consensus estimate for the ice thickness distribution of all glaciers on Earth,” Nat. Geosci., vol. 12, no. 3, pp. 168–173, Mar. 2019, doi: 10.1038/S41561-019-0300-3.

R. L. Armstrong et al., “Runoff from glacier ice and seasonal snow in High Asia: separating melt water sources in river flow,” Reg. Environ. Chang., vol. 19, no. 5, pp. 1249–1261, Jun. 2019, doi: 10.1007/S10113-018-1429-0/FIGURES/6.

M. Huss and R. Hock, “Global-scale hydrological response to future glacier mass loss,” Nat. Clim. Chang., vol. 8, no. 2, pp. 135–140, Feb. 2018, doi: 10.1038/S41558-017-0049-X.

N. Forsythe, C. G. Kilsby, H. J. Fowler, and D. R. Archer, “Assessment of Runoff Sensitivity in the Upper Indus Basin to Interannual Climate Variability and Potential Change Using MODIS Satellite Data Products,”, vol. 32, no. 1, pp. 16–29, Feb. 2012, doi: 10.1659/MRD-JOURNAL-D-11-00027.1.

S. G. Warren, “Optical properties of snow,” Rev. Geophys., vol. 20, no. 1, pp. 67–89, Feb. 1982, doi: 10.1029/RG020I001P00067.

J. Stroeve, J. E. Box, F. Gao, S. Liang, A. Nolin, and C. Schaaf, “Accuracy assessment of the MODIS 16-day albedo product for snow: comparisons with Greenland in situ measurements,” doi: 10.1016/j.rse.2004.09.001.

R. E. Dickinson, “Land Surface Processes and Climate—Surface Albedos and Energy Balance,” Adv. Geophys., vol. 25, no. C, pp. 305–353, Jan. 1983, doi: 10.1016/S0065-2687(08)60176-4.

A. W. Nolin and J. Stroeve, “The changing albedo of the Greenland ice sheet: implications for climate modeling,” Ann. Glaciol., vol. 25, pp. 51–57, 1997, doi: 10.3189/S0260305500013793.

D. Fugazza, A. Senese, R. S. Azzoni, M. Maugeri, and G. A. Diolaiuti, “Spatial distribution of surface albedo at the Forni Glacier (Stelvio National Park, Central Italian Alps),” Cold Reg. Sci. Technol., vol. 125, pp. 128–137, May 2016, doi: 10.1016/J.COLDREGIONS.2016.02.006.

F. P. J. Valero and R. J. Charlson, “Albedo-watching satellite needed to monitor change,” Nat. 2008 4517181, vol. 451, no. 7181, pp. 887–887, Feb. 2008, doi: 10.1038/451887c.

D. Six, P. Wagnon, J. E. Sicart, and C. Vincent, “Meteorological controls on snow and ice ablation for two contrasting months on Glacier de Saint-Sorlin, France,” Ann. Glaciol., vol. 50, no. 50, pp. 66–72, 2009, doi: 10.3189/172756409787769537.

T. C. Grenfell and D. K. Perovich, “Seasonal and spatial evolution of albedo in a snow-ice-land-ocean environment,” J. Geophys. Res. Ocean., vol. 109, no. C1, p. 1001, Jan. 2004, doi: 10.1029/2003JC001866.

J. K. Malmros, S. H. Mernild, R. Wilson, T. Tagesson, and R. Fensholt, “Snow cover and snow albedo changes in the central Andes of Chile and Argentina from daily MODIS observations (2000–2016),” Remote Sens. Environ., vol. 209, pp. 240–252, May 2018, doi: 10.1016/J.RSE.2018.02.072.

X. Yue et al., “Spatial and temporal variations of the surface albedo and other factors influencing Urumqi Glacier No. 1 in Tien Shan, China,” J. Glaciol., vol. 63, no. 241, pp. 899–911, 2017, doi: 10.1017/jog.2017.57.

B. W. Brock, I. C. Willis, and M. J. Sharp, “Measurement and parameterization of albedo variations at Haut Glacier d’Arolla, Switzerland,” J. Glaciol., vol. 46, no. 155, pp. 675–688, 2000, doi: 10.3189/172756500781832675.

D. Fugazza, A. Senese, R. S. Azzoni, M. Maugeri, D. Maragno, and G. A. Diolaiuti, “New evidence of glacier darkening in the Ortles-Cevedale group from Landsat observations,” Glob. Planet. Change, vol. 178, pp. 35–45, 2019, doi: 10.1016/j.gloplacha.2019.04.014.

J. F. Calleja, A. Corbea-Pérez, S. Fernández, C. Recondo, J. Peón, and M. Ángel De Pablo, “Snow Albedo Seasonality and Trend from MODIS Sensor and Ground Data at Johnsons Glacier, Livingston Island, Maritime Antarctica,” Sensors 2019, Vol. 19, Page 3569, vol. 19, no. 16, p. 3569, Aug. 2019, doi: 10.3390/S19163569.

M. J. Butt, M. E. Assiri, A. Waqas, M. J. Butt, M. E. Assiri, and A. Waqas, “Spectral Albedo Estimation of Snow Covers in Pakistan Using Landsat Data,” ESE, vol. 3, no. 2, p. 104, Aug. 2019, doi: 10.1007/S41748-019-00104-1.

H. MacHguth and M. Huss, “The length of the world’s glaciers a new approach for the global calculation of center lines,” Cryosphere, vol. 8, no. 5, pp. 1741–1755, Sep. 2014, doi: 10.5194/TC-8-1741-2014.

W. T. Pfeffer et al., “The Randolph Glacier Inventory: a globally complete inventory of glaciers,” J. Glaciol., vol. 60, no. 221, pp. 537–552, 2014, doi: 10.3189/2014JOG13J176.

M. Rankl, C. Kienholz, and M. Braun, “Glacier changes in the Karakoram region mapped by multimission satellite imagery,” Cryosphere, vol. 8, no. 3, pp. 977–989, May 2014, doi: 10.5194/TC-8-977-2014.

K. Hewitt, “Glaciers of the Karakoram Himalaya,” 2014, doi: 10.1007/978-94-007-6311-1.

Y. B. Seong et al., “Quaternary glacial history of the Central Karakoram,” Quat. Sci. Rev., vol. 26, pp. 3384–3405, 2007, doi: 10.1016/j.quascirev.2007.09.015.

G. A. Riggs, D. K. Hall, and M. O. Román, “MODIS Snow Products Collection 6 User Guide,” 2016.

A. G. Klein and J. Stroeve, “Development and validation of a snow albedo algorithm for the MODIS instrument,” Ann. Glaciol., vol. 34, pp. 45–52, 2002, doi: 10.3189/172756402781817662.

J. C. Stroeve, J. E. Box, and T. Haran, “Evaluation of the MODIS (MOD10A1) daily snow albedo product over the Greenland ice sheet,” Remote Sens. Environ., vol. 105, no. 2, pp. 155–171, Nov. 2006, doi: 10.1016/J.RSE.2006.06.009.

H. Xie, X. Wang, and T. Liang, “Development and assessment of combined Terra and Aqua snow cover products in Colorado Plateau, USA and northern Xinjiang, China,”, vol. 3, no. 1, p. 033559, Oct. 2009, doi: 10.1117/1.3265996.

S. Weiers, “Zur Klimatologie des NW-Karakorum und angrenzender Gebiete statistische Analysen unter Einbeziehung von Wettersatellitenbildern und eines Geographischen Informationssystems (GIS) ; mit 33 Tabellen.”

D. Scherler, B. Bookhagen, M. R. Strecker, D. Scherler, B. Bookhagen, and M. R. Strecker, “Spatially variable response of Himalayan glaciers to climate change affected by debris cover,” NatGe, vol. 4, no. 3, pp. 156–159, Mar. 2011, doi: 10.1038/NGEO1068.

C. Gul, S. chang Kang, B. Ghauri, M. Haq, S. Muhammad, and S. Ali, “Using Landsat images to monitor changes in the snow-covered area of selected glaciers in northern Pakistan,” J. Mt. Sci., vol. 14, no. 10, pp. 2013–2027, Oct. 2017, doi: 10.1007/S11629-016-4097-X.

S. B. Kapnick, T. L. Delworth, M. Ashfaq, S. Malyshev, and P. C. D. Milly, “Snowfall less sensitive to warming in Karakoram than in Himalayas due to a unique seasonal cycle,” Nat. Geosci., vol. 7, no. 11, pp. 834–840, Nov. 2014, doi: 10.1038/NGEO2269.

T. Bolch et al., “The state and fate of Himalayan glaciers,” Science, vol. 336, no. 6079, pp. 310–314, Apr. 2012, doi: 10.1126/SCIENCE.1215828.

A. Kumar, H. S. Negi, K. Kumar, C. Shekhar, and N. Kanda, “Quantifying mass balance of East-Karakoram glaciers using geodetic technique,” Polar Sci., vol. 19, pp. 24–39, Mar. 2019, doi: 10.1016/J.POLAR.2018.11.005.

N. Forsythe, H. J. Fowler, X. Li, S. Blenkinsop, and D. Pritchard, “Forsythe N , Fowler HJ , Li XF , Blenkinsop S , Pritchard D . Karakoram temperature and glacial melt driven by regional atmospheric circulation variability . Nature Climate Change 2017 ,” no. February, 2018.




How to Cite

Akhter, Z. H., Ke, C.-Q., Soomro, I. A., & Amir, A. (2022). MODIS-Observed Spatiotemporal Changes in Surface Albedo of Karakoram Glaciers During 2000-2018. International Journal of Innovations in Science & Technology, 4(1), 246–265. Retrieved from