Reliability Awareness Multiple Path Installation in Software Defined Networking using Machine Learning Algorithm

Authors

  • Rashid Amin university of chakwal
  • Muzammal Majeed
  • Farrukh shoukat Ali
  • Adeel Ahmed
  • Mudassar Hussain

Keywords:

SDN, Link failure, Failure Recovery, Machine Learning, Linear Regression

Abstract

Link failure is still a severe problem in today's networking system. Transmission delays and data packet loss cause link failure in the network. Rapid connection recovery after a link breakdown is an important topic in networking. The failure of the networking link must be recovered whenever possible because it could cause blockage of network traffic and obstruct normal network operation. To overcome this difficulty, backup or secondary channels can be chosen adaptively and proactively in SDN based on data traffic dynamics in the network. When a network connection fails, packets must find a different way to their destination. The goal of this research is to find an alternative way. Our proposed methodology uses a machine-learning algorithm called Linear Regression to uncover alternative network paths. To provide for speedy failure recovery, the controller communicates this alternate path to the network switches ahead of time. We train, test, and validate the learning model using a machine learning approach. To simulate our proposed technique and locate the trials, we use the Mininet network simulator. The simulation results show that our suggested approach recovers link failure most effectively compared to existing solutions.

References

M. Ahmid, O. Kazar, and L. Kahloul, “A secure and intelligent real-time health monitoring system for remote cardiac patients,” Int. J. Med. Eng. Inform., vol. 14, no. 2, pp. 134–150, 2022, doi: 10.1504/IJMEI.2022.121130.

Y. Wang, D. Jiang, L. Huo, and Y. Zhao, “A New Traffic Prediction Algorithm to Software Defined Networking,” Mob. Networks Appl. 2019 262, vol. 26, no. 2, pp. 716–725, Dec. 2019, doi: 10.1007/S11036-019-01423-3.

A. N. Shahbaz, H. Barati, and A. Barati, “Multipath routing through the firefly algorithm and fuzzy logic in wireless sensor networks,” Peer-to-Peer Netw. Appl. 2020 142, vol. 14, no. 2, pp. 541–558, Oct. 2020, doi: 10.1007/S12083-020-01004-2.

S. H. Haji et al., “Comparison of Software Defined Networking with Traditional Networking,” Asian J. Res. Comput. Sci., no. June, pp. 1–18, 2021, doi: 10.9734/ajrcos/2021/v9i230216.

D. S. Rana, S. A. Dhondiyal, and S. K. Chamoli, “Software Defined Networking (SDN) Challenges, issues and Solution,” Int. J. Comput. Sci. Eng., vol. 7, no. 1, pp. 884–889, 2019, doi: 10.26438/ijcse/v7i1.884889.

A. Shaghaghi, M. A. Kaafar, R. Buyya, and S. Jha, “Software-Defined Network (SDN) data plane security: Issues, solutions, and future directions,” Handb. Comput. Networks Cyber Secur. Princ. Paradig., pp. 341–387, Jan. 2019, doi: 10.1007/978-3-030-22277-2_14/COVER.

J. Ali, G. M. Lee, B. H. Roh, D. K. Ryu, and G. Park, “Software-defined networking approaches for link failure recovery: A survey,” Sustain., vol. 12, no. 10, 2020, doi: 10.3390/su12104255.

H. A. Eissa, K. A. Bozed, and H. Younis, “Software Defined Networking,” 19th Int. Conf. Sci. Tech. Autom. Control Comput. Eng. STA 2019, no. March 2019, pp. 620–625, 2019, doi: 10.1109/STA.2019.8717234.

K. Bakhshi Kiadehi, A. M. Rahmani, and A. Sabbagh Molahosseini, “A fault-tolerant architecture for internet-of-things based on software-defined networks,” Telecommun. Syst., vol. 77, no. 1, pp. 155–169, May 2021, doi: 10.1007/S11235-020-00750-1.

X. Gao, M. Qiu, and M. Liu, “Machine Learning Based Network Censorship,” 2021 8th IEEE Int. Conf. Cyber Secur. Cloud Comput. (CSCloud)/2021 7th IEEE Int. Conf. Edge Comput. Scalable Cloud, pp. 149–154, Jun. 2021, doi: 10.1109/CSCLOUD-EDGECOM52276.2021.00036.

C. Janiesch, P. Zschech, and K. Heinrich, “Machine learning and deep learning,” Electron. Mark., vol. 31, no. 3, pp. 685–695, Apr. 2021, doi: 10.1007/s12525-021-00475-2.

Q. M. A. and M. . Kiran. I, Siddique. Z, Butt. A. R, Mudassir. A. I, “Towards Skin Cancer Classification Using Machine Learning and Deep Learning Algorithms: A Comparison,” I nternational J. Innov. Sci. Technol., vol. 3, no. special issue, pp. 110–118, 2021.

M. Alizamir, S. Kim, O. Kisi, and M. Zounemat-Kermani, “A comparative study of several machine learning based non-linear regression methods in estimating solar radiation: Case studies of the USA and Turkey regions,” Energy, vol. 197, Apr. 2020, doi: 10.1016/J.ENERGY.2020.117239.

S. Ray, “A Quick Review of Machine Learning Algorithms,” Proc. Int. Conf. Mach. Learn. Big Data, Cloud Parallel Comput. Trends, Prespectives Prospect. Com. 2019, pp. 35–39, Feb. 2019, doi: 10.1109/COMITCON.2019.8862451.

M. Anjum.S. M, Riaz.O,Latif, S, “Diastolic Dysfunction Prediction with Symptoms Using Machine Learning Approach,” Int. J. Innov. Sci. Technol., vol. 4, no. 3, pp. 714–727, 2022, [Online]. Available: https://journal.50sea.com/index.php/IJIST/article/view/280/

A. Malik, B. Aziz, M. Adda, and C. H. Ke, “Smart Routing: Towards Proactive Fault-Handling in Software-Defined Networks,” Comput. Networks, vol. 170, Apr. 2019, doi: 10.48550/arxiv.1904.00717.

R. O. and S. W. Anjum. M. S, Mumtaz. S, “Heart Attack Risk Prediction with Duke Treadmill Score with Symptoms using Data Mining,” I nternational J. Innov. Sci. Technol., vol. 3, no. 4, pp. 174–185, 2021.

L. El-Garoui, S. Pierre, and S. Chamberland, “A new sdn-based routing protocol for improving delay in smart city environments,” Smart Cities, vol. 3, no. 3, pp. 1004–1021, 2020, doi: 10.3390/smartcities3030050.

R. A. U. Ullah. A, Qayyum. H, Hassan. F, Khan. M. k, “Comparison of Machine Learning Algorithms for Sepsis Detection,” Int. J. Innov. Sci. Technol., vol. 4, no. 1, pp. 175–188, 2022, [Online]. Available: https://journal.50sea.com/index.php/IJIST/article/view/190

S. Moazzeni, M. R. Khayyambashi, and N. Movahhedinia, “Improving the Reliability of Software-Defined Networks with Distributed Controllers Through Leader Election Algorithm and Colored Petri-Net,” Wirel. Pers. Commun., vol. 109, no. 1, pp. 645–656, Nov. 2019, doi: 10.1007/S11277-019-06583-9.

R. A. Manzoor. S, Qayyum. H, Hassan. F, Ullah. A, Nawaz. A, “Melanoma Detection Using a Deep Learning Approach,” Int. J. Innov. Sci. Technol., vol. 4, no. 1, pp. 222–232, 2022.

T. Hu, P. Yi, J. Lan, Y. Hu, and P. Sun, “FTLink: Efficient and flexible link fault tolerance scheme for data plane in Software-Defined Networking,” Futur. Gener. Comput. Syst., vol. 111, pp. 381–400, Oct. 2020, doi: 10.1016/J.FUTURE.2019.11.015.

T. Truong-Huu, P. Prathap, P. M. Mohan, and M. Gurusamy, “Fast and adaptive failure recovery using machine learning in software defined networks,” 2019 IEEE Int. Conf. Commun. Work. ICC Work. 2019 - Proc., May 2019, doi: 10.1109/ICCW.2019.8757169.

M. Silva Freitas, R. Oliveira, D. Molinos, J. Melo, P. Frosi Rosa, and F. De Oliveira Silva, “ConForm: In-band Control Plane Formation Protocol to SDN-Based Networks,” Int. Conf. Inf. Netw., vol. 2020-January, pp. 574–579, Jan. 2020, doi: 10.1109/ICOIN48656.2020.9016580.

R. B. Shohani and S. A. Mostafavi, “Introducing a New Linear Regression Based Method for Early DDoS Attack Detection in SDN,” 2020 6th Int. Conf. Web Res. ICWR 2020, pp. 126–132, Apr. 2020, doi: 10.1109/ICWR49608.2020.9122310.

P. Kamboj and S. Pal, “Software-Defined Networking in Data Centers,” Softw. Defin. Internet Everything Springer, pp. 177–203, 2022.

A. Wang, Z. Zha, Y. Guo, and S. Chen, “Software-Defined Networking Enhanced Edge Computing: A Network-Centric Survey,” Proc. IEEE, vol. 107, no. 8, pp. 1500–1519, Aug. 2019, doi: 10.1109/JPROC.2019.2924377.

M. P. Nowak and P. Pecka, “Routing algorithms simulation for self-aware sdn,” Electron., vol. 11, no. 1, 2022, doi: 10.3390/electronics11010104.

L.-D. Chou, Y.-T. Yang, Y.-M. Hong, J.-K. Hu, and B. Jean, “A Genetic-Based Load Balancing Algorithm in OpenFlow Network,” pp. 411–417, 2014, doi: 10.1007/978-94-007-7262-5_48.

Y. Huang and Y. Sun, “A Dataset of Daily Interactive Manipulation,” Int. J. Rob. Res., vol. 38, no. 8, pp. 879–886, Jul. 2018, doi: 10.48550/arxiv.1807.00858.

M. Hasan, H. Dahshan, E. Abdelwanees, and A. Elmoghazy, “SDN Mininet Emulator Benchmarking and Result Analysis,” 2nd Nov. Intell. Lead. Emerg. Sci. Conf. NILES 2020, pp. 355–360, Oct. 2020, doi: 10.1109/NILES50944.2020.9257913.

M. Y. Daha, M. S. M. Zahid, B. Isyaku, and A. A. Alashhab, “CDRA: A Community Detection based Routing Algorithm for Link Failure Recovery in Software Defined Networks,” Int. J. Adv. Comput. Sci. Appl., vol. 12, no. 11, pp. 712–722, 2021, doi: 10.14569/IJACSA.2021.0121181.

I. Khan and K. Chen, “EBA: Efficient Bandwidth Aggregation for Connected Vehicles with MPTCP,” IEEE Internet Things J., vol. 9, no. 8, pp. 5812–5823, Apr. 2022, doi: 10.1109/JIOT.2021.3065911.

S. Petale and J. Thangaraj, “Link Failure Recovery Mechanism in Software Defined Networks,” IEEE J. Sel. Areas Commun., vol. 38, no. 7, pp. 1285–1292, 2020, doi: 10.1109/JSAC.2020.2986668.

R. H. Jhaveri, R. Tan, A. Easwaran, and S. V. Ramani, “Managing industrial communication delays with software-defined networking,” Proc. - 2019 IEEE 25th Int. Conf. Embed. Real-Time Comput. Syst. Appl. RTCSA 2019, Aug. 2019, doi: 10.1109/RTCSA.2019.8864557.

Downloads

Published

2022-08-21

How to Cite

Amin, R., Majeed, M. ., shoukat Ali, F., Ahmed, A. ., & Hussain, M. . (2022). Reliability Awareness Multiple Path Installation in Software Defined Networking using Machine Learning Algorithm. International Journal of Innovations in Science & Technology, 4(5), 122–136. Retrieved from https://journal.50sea.com/index.php/IJIST/article/view/381