An Enhanced Authentication Scheme for Ensuring Network Devices Security and Performance Optimization

Authors

  • Naveed Husain School of Systems and Technology, University of Management and Technology, Lahore, Pakistan
  • Farrukh Liaqat School of Systems and Technology, University of Management and Technology, Lahore, Pakistan
  • Zeeshan Akram Department of Computer Science, Lahore Leads University, Lahore, Pakistan

Keywords:

Wireless Networks (WNs), Message Digests (MDs), Secret Value, Base Station, Token Server

Abstract

In the technology world, the wireless network is more flexible and adaptable compared to the wired network. Because it is easy to install and does not require cables. Also, there have been many recent advances in the area of WNs (Wireless Networks), which have undergone rapid development. WNs have emerged as a prevailing technology due to their wide range of applications in every field of life. The WNs are easily prone to security attacks since once deployed these networks are unattended and unprotected. In networks, authentication is a well-explored research area. Recent advancements in networks and ubiquitous devices have meant that there is a need to explore the area of authentication with a new perspective. This study explores authentication schemes and their adoption in network-connected devices. The research will study how a wide variety of devices like those in IoT, WSN, industrial IoT, and wearable healthcare devices establish authentication. The focus of the study will be on high levels of security with an algorithm that has a small footprint. The scheme will be studying the design of a lightweight and secure authentication framework for network-connected devices. The proposed scheme provides extended security features while minimizing wireless communication security challenges. The final results will validate the authenticity of this scheme.

References

H. N. Dai, R. C. W. Wong, H. Wang, Z. Zheng, and A. V. Vasilakos, “Big Data Analytics for Large-scale Wireless Networks,” ACM Comput. Surv., vol. 52, no. 5, Sep. 2019, doi: 10.1145/3337065.

S. Abidin, V. R. Vadi, and A. Rana, “On Confidentiality, Integrity, Authenticity, and Freshness (CIAF) in WSN,” Adv. Intell. Syst. Comput., vol. 1158, pp. 87–97, 2021, doi: 10.1007/978-981-15-4409-5_8/COVER.

C. Biswas, U. Das Gupta, and M. M. Haque, “An Efficient Algorithm for Confidentiality, Integrity and Authentication Using Hybrid Cryptography and Steganography,” 2nd Int. Conf. Electr. Comput. Commun. Eng. ECCE 2019, Apr. 2019, doi: 10.1109/ECACE.2019.8679136.

J. Cui, L. Shao, H. Zhong, Y. Xu, and L. Liu, “Data aggregation with end-to-end confidentiality and integrity for large-scale wireless sensor networks,” Peer-to-Peer Netw. Appl., vol. 11, no. 5, pp. 1022–1037, Sep. 2018, doi: 10.1007/S12083-017-0581-5/TABLES/7.

J. Zhao and G. Cao, “Robust topology control in multi-hop cognitive radio networks,” IEEE Trans. Mob. Comput., vol. 13, no. 11, pp. 2634–2647, Nov. 2014, doi: 10.1109/TMC.2014.2312715.

A. J. Olaode, “AVAILABILITY OF INFORMATION AND ITS SECURITY MEASURES,” СОВРЕМЕННЫЕ ТЕХНОЛОГИИ АКТУАЛЬНЫЕ ВОПРОСЫ, ДОСТИЖЕНИЯ И ИННОВАЦИИ, pp. 37–42, 2019.

M. Khasawneh, I. Kajman, R. Alkhudaidy, and A. Althubyani, “A Survey on Wi-Fi Protocols: WPA and WPA2,” Commun. Comput. Inf. Sci., vol. 420 CCIS, pp. 496–511, 2014, doi: 10.1007/978-3-642-54525-2_44/COVER.

H. Z. U. K. and H. Zahid, “Comparative study of authentication techniques,” Int. J. Video Image Process. Netw. Secur. IJVIPNS, vol. 10, no. 4, pp. 9–13, 2010.

M. Khasawneh and A. Agarwal, “A Secure and Efficient Authentication Mechanism Applied to Cognitive Radio Networks,” IEEE Access, vol. 5, pp. 15597–15608, Jul. 2017, doi: 10.1109/ACCESS.2017.2723322.

A. Al Abdulwahid, N. Clarke, I. Stengel, S. Furnell, and C. Reich, “Continuous and transparent multimodal authentication: reviewing the state of the art,” Cluster Comput., vol. 19, no. 1, pp. 455–474, Mar. 2016, doi: 10.1007/S10586-015-0510-4/METRICS.

A. H. Moon, U. Iqbal, and G. M. Bhat, “Implementation of Node Authentication for WSN Using Hash Chains,” Procedia Comput. Sci., vol. 89, pp. 90–98, Jan. 2016, doi: 10.1016/J.PROCS.2016.06.013.

and W. C. L. Zhou, X. Li, K.-H. Yeh, C. Su, “Lightweight IoT-based authentication scheme in cloud computing circumstance,” Futur. Gener. Comput. Syst, vol. 91, pp. 244–251, 2019.

N. A. M. Risalat, M. T. Hasan, M. S. Hossain, and M. M. Rahman, “Advanced real time RFID mutual authentication protocol using dynamically updated secret value through encryption and decryption process,” ECCE 2017 - Int. Conf. Electr. Comput. Commun. Eng., pp. 788–793, Apr. 2017, doi: 10.1109/ECACE.2017.7913010.

A. Ometov, S. Bezzateev, N. Mäkitalo, S. Andreev, T. Mikkonen, and Y. Koucheryavy, “Multi-Factor Authentication: A Survey,” Cryptogr. 2018, Vol. 2, Page 1, vol. 2, no. 1, p. 1, Jan. 2018, doi: 10.3390/CRYPTOGRAPHY2010001.

Z. A. Alizai, N. F. Tareen, and I. Jadoon, “Improved IoT Device Authentication Scheme Using Device Capability and Digital Signatures,” ICAEM 2018 - 2018 Int. Conf. Appl. Eng. Math. Proc., pp. 115–119, Nov. 2018, doi: 10.1109/ICAEM.2018.8536261.

D. Wang and P. Wang, “Two Birds with One Stone: Two-Factor Authentication with Security beyond Conventional Bound,” IEEE Trans. Dependable Secur. Comput., vol. 15, no. 4, pp. 708–722, Jul. 2018, doi: 10.1109/TDSC.2016.2605087.

Z. L. et Al., “FBS-Radar: Uncovering Fake Base Stations at Scale in the Wild,” 2017.

M. Pannu, R. Bird, B. Gill, and K. Patel, “Investigating vulnerabilities in GSM security,” 2015 Int. Conf. Work. Comput. Commun. IEMCON 2015, Dec. 2015, doi: 10.1109/IEMCON.2015.7344480.

O. Delgado-Mohatar, A. Fúster-Sabater, and J. M. Sierra, “A light-weight authentication scheme for wireless sensor networks,” Ad Hoc Networks, vol. 9, no. 5, pp. 727–735, Jul. 2011, doi: 10.1016/J.ADHOC.2010.08.020.

X. Sun, S. Men, C. Zhao, and Z. Zhou, “A security authentication scheme in machine-to-machine home network service,” Secur. Commun. Networks, vol. 8, no. 16, pp. 2678–2686, Nov. 2015, doi: 10.1002/SEC.551.

K. Garrett, S. R. Talluri, and S. Roy, “On vulnerability analysis of several password authentication protocols,” Innov. Syst. Softw. Eng., vol. 11, no. 3, pp. 167–176, Sep. 2015, doi: 10.1007/S11334-015-0250-X/METRICS.

H. J. Mun, S. Hong, and J. Shin, “A novel secure and efficient hash function with extra padding against rainbow table attacks,” Cluster Comput., vol. 21, no. 1, pp. 1161–1173, Mar. 2018, doi: 10.1007/S10586-017-0886-4/METRICS.

S. Parvin and F. K. Hussain, “Digital signature-based secure communication in cognitive radio networks,” Proc. - 2011 Int. Conf. Broadband Wirel. Comput. Commun. Appl. BWCCA 2011, pp. 230–235, 2011, doi: 10.1109/BWCCA.2011.95.

S. Parvin, F. K. Hussain, and O. K. Hussain, “Digital signature-based authentication framework in cognitive radio networks,” ACM Int. Conf. Proceeding Ser., pp. 136–142, 2012, doi: 10.1145/2428955.2428985.

A. A.-M. and M. C. Morogan, “Identity-based authentication and access control in wireless sensor networks,” Int. J. Comput. Appl, vol. 41, no. 13, 2012.

V. J. Rathod, N. C. Iyer, and S. M. Meena, “A survey on fingerprint biometric recognition system,” Proc. 2015 Int. Conf. Green Comput. Internet Things, ICGCIoT 2015, pp. 323–326, Jan. 2016, doi: 10.1109/ICGCIOT.2015.7380482.

A. El-Sayed, “Multi-biometric systems: a state of the art survey and research irections,” IJACSA) Int. J. Adv. Comput. Sci. Appl, vol. 6, 2015.

Q. Jiang, J. Ma, G. Li, and X. Li, “Improvement of robust smart-card-based password authentication scheme,” Int. J. Commun. Syst., vol. 28, no. 2, pp. 383–393, Jan. 2015, doi: 10.1002/DAC.2644.

W. M. AlOmari and H. Abusaimeh, “Modified USB Security Token for User Authentication,” Comput. Inf. Sci., vol. 8, no. 3, p. p51, Aug. 2015, doi: 10.5539/CIS.V8N3P51.

A. X. Liu and L. R. A. Bailey, “PAP: A privacy and authentication protocol for passive RFID tags,” Comput. Commun., vol. 32, no. 7–10, pp. 1194–1199, May 2009, doi: 10.1016/J.COMCOM.2009.03.006.

P. Gope, J. Lee, and T. Q. S. Quek, “Lightweight and Practical Anonymous Authentication Protocol for RFID Systems Using Physically Unclonable Functions,” IEEE Trans. Inf. Forensics Secur., vol. 13, no. 11, pp. 2831–2843, Nov. 2018, doi: 10.1109/TIFS.2018.2832849.

and A. P. H. Yang, V. Oleshchuk, “Verifying group authentication protocols by Scyther,” J. Wirel. Mob. Networks, Ubiquitous Comput. Dependable Appl, vol. 7, no. 2, pp. 3–19, 2019.

C. Cremers, “Scyther User Manual. 18 February 2014. - References - Scientific Research Publishing,” 2014. https://www.scirp.org/(S(351jmbntvnsjt1aadkozje))/reference/ReferencesPapers.aspx?ReferenceID=1424654 (accessed Sep. 14, 2023).

D. Dolev and A. C. Yao, “On the Security of Public Key Protocols,” IEEE Trans. Inf. Theory, vol. 29, no. 2, pp. 198–208, 1983, doi: 10.1109/TIT.1983.1056650.

I. Cervesato, “The Dolev-Yao intruder is the most powerful attacker,” 16th Annu. Symp. Log. Comput. Sci., vol. 1, 2001.

K. Chatterjee, A. De, and D. Gupta, “A Secure and Efficient Authentication Protocol in Wireless Sensor Network,” Wirel. Pers. Commun., vol. 81, no. 1, pp. 17–37, Mar. 2015, doi: 10.1007/S11277-014-2115-2/METRICS.

“Speed Comparison of Popular Crypto Algorithms.” https://www.cryptopp.com/benchmarks.html (accessed Sep. 14, 2023).

M. T. Ubaid, A. Kiran, M. T. Raja, U. A. Asim, A. Darboe, and M. A. Arshed, “Automatic Helmet Detection using EfficientDet,” 4th Int. Conf. Innov. Comput. ICIC 2021, 2021, doi: 10.1109/ICIC53490.2021.9693093.

M. T. Ubaid, M. Z. Khan, M. Rumaan, M. A. Arshed, M. U. G. Khan, and A. Darboe, “COVID-19 SOP’s Violations Detection in Terms of Face Mask Using Deep Learning,” 4th Int. Conf. Innov. Comput. ICIC 2021, 2021, doi: 10.1109/ICIC53490.2021.9692999.

M. A. Arshed, W. Qureshi, M. U. G. Khan, and M. A. Jabbar, “Symptoms Based Covid-19 Disease Diagnosis Using Machine Learning Approach,” 4th Int. Conf. Innov. Comput. ICIC 2021, 2021, doi: 10.1109/ICIC53490.2021.9692986.

M. Mubeen, M. A. Arshed, and H. A. Rehman, “DeepFireNet - A Light-Weight Neural Network for Fire-Smoke Detection,” Commun. Comput. Inf. Sci., vol. 1616 CCIS, pp. 171–181, 2022, doi: 10.1007/978-3-031-10525-8_14/COVER.

M. A. Arshed, S. Mumtaz, M. S. Liaqat, and I. Haq, “LSTM Based Sentiment Analysis Model to Monitor COVID-19 Emotion LSTM Based Sentiment Analysis Model to Monitor COVID-19 Emotion,” no. May, 2022.

M. Tanveer, A. U. Khan, N. Kumar, and M. M. Hassan, “RAMP-IoD: A Robust Authenticated Key Management Protocol for the Internet of Drones,” IEEE Internet Things J., vol. 9, no. 2, pp. 1339–1353, Jan. 2022, doi: 10.1109/JIOT.2021.3084946.

M. Tanveer, H. Alasmary, N. Kumar, and A. Nayak, “SAAF-IoD: Secure and Anonymous Authentication Framework for the Internet of Drones,” IEEE Trans. Veh. Technol., 2023, doi: 10.1109/TVT.2023.3306813.

Downloads

Published

2023-09-20

How to Cite

Husain, N., Liaqat, F., & Akram, Z. (2023). An Enhanced Authentication Scheme for Ensuring Network Devices Security and Performance Optimization. International Journal of Innovations in Science & Technology, 5(3), 178–192. Retrieved from https://journal.50sea.com/index.php/IJIST/article/view/522