Design and Analysis of Microstrip Patch Antenna Operating at Higher Order Mode

Authors

  • Muhammad Adil Khan Department of Electrical Engineering, University of Engineering & Technology, Peshawar
  • Shahid Bashir Department of Electrical Engineering, University of Engineering & Technology, Peshawar
  • Awais Khan Department of Electrical Engineering, University of Science & Technology, Bannu, Pakistan
  • Muhammad Awais Department of Electrical Engineering, University of Engineering & Technology, Peshawar

Keywords:

Characteristics Mode Analysis (CMA), Higher Order Mode (HOM), Bandwidth Enhancement, Patch Antenna

Abstract

This paper proposes an enhanced bandwidth microstrip patch antenna by exciting it with higher order modes. Characteristics Mode Analysis (CMA) is used to analyze and understand the possible modes for bandwidth enhancement of microstrip patch antenna. Furthermore, Defected Ground Structure (DGS) technique is utilized for bandwidth enhancement. The proposed antenna is having a size of 67.5 × 67.5 mm2 with an operating frequency of 5.8 GHz. The impedance bandwidth is increased by 13.8% using Defected Ground Structure (DGS) by adding slots in the ground for higher order mode operation. Moreover, the proposed antenna has an overall efficiency of above 80. Therefore, enhanced impedance bandwidth, improved radiation pattern, and compatible design make the design novel and suitable for practical wireless applications.

References

R. Chair, C. L. Mak, K. F. Lee, K. M. Luk, and A. A. Kishk, “Miniature wide-band half U-slot and half E-shaped patch antennas,” IEEE Trans. Antennas Propag., vol. 53, no. 8 II, pp. 2645–2652, Aug. 2005, doi: 10.1109/TAP.2005.851852.

P. Tilanthe and P. C. Sharma, “An equilateral triangular patch antenna with T - Shaped notch for enhanced gain,” Proc. 4th Int. Conf. Wirel. Commun. Sens. Networks, WCSN 2008, pp. 179–180, 2008, doi: 10.1109/WCSN.2008.4772706.

Q. Liu and L. Zhu, “A Compact Wideband Filtering Antenna on Slots-Loaded Square Patch Radiator under Triple Resonant Modes,” IEEE Trans. Antennas Propag., vol. 70, no. 10, pp. 9882–9887, Oct. 2022, doi: 10.1109/TAP.2022.3184494.

S. Agrawal and M. S. Parihar, “Bandwidth Enhancement of a Compact Slot Antenna with Frequency Scale Up/down Capability,” IETE Tech. Rev., vol. 40, no. 5, pp. 632–640, Sep. 2023, doi: 10.1080/02564602.2022.2144494.

T. Anu and V. Dinesh, “Analysis of Transverse Magnetic Modes in Microstrip Patch Antenna,” Asian J. Appl. Sci. Technol. (Open Access Q. Int. J., vol. 2, no. 2, pp. 759–766, Accessed: Aug. 07, 2024. [Online]. Available: www.ajast.net

M. Abbaspour and H. R. Hassani, “Wideband star-shaped microstrip patch antenna,” Prog. Electromagn. Res. Lett., vol. 1, pp. 61–68, 2008, doi: 10.2528/PIERL07111505.

R. K. Verma, “Bandwidth Enhancement of an Inverted F-Shape Notch Loaded Rectangular Microstrip Patch Antenna for Wireless Applications in L and S-band,” Wirel. Pers. Commun., vol. 125, no. 1, pp. 861–877, Jul. 2022, doi: 10.1007/S11277-022-09581-6/METRICS.

K. V. Pavan and J. Femila Roseline, “Design and Bandwidth Enhancement of Parasitic Patch Antenna and Comparison with U-Slot Microstrip Patch Antenna for GPS Applications,” Proc. 2nd Int. Conf. Innov. Pract. Technol. Manag. ICIPTM 2022, pp. 600–605, 2022, doi: 10.1109/ICIPTM54933.2022.9754082.

E. Chang, S. A. Long, and W. F. Richards, “An Experimental Investigation of Electrically Thick Rectangular Microstrip Antennas,” IEEE Trans. Antennas Propag., vol. 34, no. 6, pp. 767–772, 1986, doi: 10.1109/TAP.1986.1143890.

E. O. Omoru and V. M. Srivastava, “Bandwidth and Return Loss Improvement Technique Using Double-Material Substrate Cylindrical Surrounding Patch Antenna:Part-I,” Int. J. Eng. Trends Technol. - IJETT, vol. 69, no. 12, pp. 252–256, Dec. 2021, doi: 10.14445/22315381/IJETT-V69I12P230.

S. Elajoumi, A. Tajmouati, J. Zbitou, A. Errkik, A. M. Sanchez, and M. Latrach, “Bandwidth enhancement of compact microstrip rectangular antennas for UWB applications,” TELKOMNIKA (Telecommunication Comput. Electron. Control., vol. 17, no. 3, pp. 1559–1568, Jun. 2019, doi: 10.12928/TELKOMNIKA.V17I3.9184.

B. Mishra, R. K. Verma, N. Yashwanth, and R. K. Singh, “A review on microstrip patch antenna parameters of different geometry and bandwidth enhancement techniques,” Int. J. Microw. Wirel. Technol., vol. 14, no. 5, pp. 652–673, Jun. 2022, doi: 10.1017/S1759078721001148.

S. Tripathi, A. Mohan, and S. Yadav, “Hexagonal fractal ultra-wideband antenna using Koch geometry with bandwidth enhancement,” IET Microwaves, Antennas Propag., vol. 8, no. 15, pp. 1445–1450, Dec. 2014, doi: 10.1049/IET-MAP.2014.0326.

P. S. Hall, “Probe Compensation in Thick Microstrip Patches,” Electron. Lett., vol. 23, no. 11, pp. 606–607, 1987, doi: 10.1049/EL:19870434.

D. Mitra, D. Das, and S. R. Bhadra Chaudhuri, “Bandwidth enhancement of microstrip line and CPW-fed asymmetrical slot antennas,” Prog. Electromagn. Res. Lett., vol. 32, pp. 69–79, 2012, doi: 10.2528/PIERL12032204.

K. S. Ahmad, M. Z. A. A. Aziz, and N. B. Abdullah, “Microstrip Antenna Array with Defected Ground Structure and Copper Tracks for Bandwidth Enhancement,” 2020 IEEE Int. RF Microw. Conf. RFM 2020 - Proceeding, Dec. 2020, doi: 10.1109/RFM50841.2020.9344781.

D. Rusdiyanto, C. Apriono, D. W. Astuti, and M. Muslim, “BANDWIDTH AND GAIN ENHANCEMENT OF MICROSTRIP ANTENNA USING DEFECTED GROUND STRUCTURE AND HORIZONTAL PATCH GAP,” SINERGI, vol. 25, no. 2, pp. 153–158, Feb. 2021, doi: 10.22441/SINERGI.2021.2.006.

D. Shashi Kumar and S. Suganthi, “Miniaturization of Microstrip Antenna with Enhanced Gain Using Defected Ground Structures,” 2019 Int. Conf. Data Sci. Commun. IconDSC 2019, Mar. 2019, doi: 10.1109/ICONDSC.2019.8817019.

K. Z. Hu, M. C. Tang, M. Li, and R. W. Ziolkowski, “Compact, Low-Profile, Bandwidth-Enhanced Substrate Integrated Waveguide Filtenna,” IEEE Antennas Wirel. Propag. Lett., vol. 17, no. 8, pp. 1552–1556, Aug. 2018, doi: 10.1109/LAWP.2018.2854898.

T. Q. Tran and S. K. Sharma, “Radiation characteristics of a multimode concentric circular microstrip patch antenna by controlling amplitude and phase of modes,” IEEE Trans. Antennas Propag., vol. 60, no. 3, pp. 1601–1605, Mar. 2012, doi: 10.1109/TAP.2011.2180305.

P. Juyal and L. Shafai, “Sidelobe Reduction of TM12 Mode of Circular Patch via Nonresonant Narrow Slot,” IEEE Trans. Antennas Propag., vol. 64, no. 8, pp. 3361–3369, Aug. 2016, doi: 10.1109/TAP.2016.2576503.

Chandan and B. S. Rai, “Bandwidth enhancement of wang shape microstrip patch antenna for wireless system,” Proc. - 2014 4th Int. Conf. Commun. Syst. Netw. Technol. CSNT 2014, pp. 11–15, 2014, doi: 10.1109/CSNT.2014.11.

T. Chen, Y. Chen, and R. Jian, “A Wideband Differential-Fed Microstrip Patch Antenna Based on Radiation of Three Resonant Modes,” Int. J. Antennas Propag., vol. 2019, no. 1, p. 4656141, Jan. 2019, doi: 10.1155/2019/4656141.

Q. U. Khan and M. Bin Ihsan, “Higher order mode excitation for high gain microstrip patch antenna,” AEU - Int. J. Electron. Commun., vol. 68, no. 11, pp. 1073–1077, Nov. 2014, doi: 10.1016/J.AEUE.2014.05.009.

F. A. A. De Souza, A. L. P. De Siqueira Campos, A. G. Neto, A. J. R. Serres, and C. C. R. De Albuquerque, “Higher Order Mode Attenuation in Microstrip Patch Antenna with DGS H Filter Specification from 5 to 10 GHz Range,” J. Microwaves, Optoelectron. Electromagn. Appl., vol. 19, no. 2, pp. 214–227, Jun. 2020, doi: 10.1590/2179-10742020V19I2823.

L. Tao et al., “Bandwidth Enhancement of Microstrip Patch Antenna Using Complementary Rhombus Resonator,” Wirel. Commun. Mob. Comput., vol. 2018, no. 1, p. 6352181, Jan. 2018, doi: 10.1155/2018/6352181.

V. A. P. Chavali, A. G. Ambekar, A. A. Kadam, A. A. Deshmukh, and K. P. Ray, “Compact Stub Loaded Modified Plus Shape Microstrip Antenna for Broadband Response,” Lect. Notes Electr. Eng., vol. 570, pp. 111–117, 2020, doi: 10.1007/978-981-13-8715-9_14.

J. Anguera, A. Andujar, and J. Jayasinghe, “High-Directivity Microstrip Patch Antennas Based on TModd-0 Modes,” IEEE Antennas Wirel. Propag. Lett., vol. 19, no. 1, pp. 39–43, Jan. 2020, doi: 10.1109/LAWP.2019.2952260.

X. Zhang, L. Zhu, and Q. Sen Wu, “Sidelobe-Reduced and Gain-Enhanced Square Patch Antennas with Adjustable Beamwidth under TM03 Mode Operation,” IEEE Trans. Antennas Propag., vol. 66, no. 4, pp. 1704–1713, Apr. 2018, doi: 10.1109/TAP.2018.2806220.

P. Juyal and L. Shafai, “A High-Gain Single-Feed Dual-Mode Microstrip Disc Radiator,” IEEE Trans. Antennas Propag., vol. 64, no. 6, pp. 2115–2126, Jun. 2016, doi: 10.1109/TAP.2016.2543804.

X. Zhang, K. D. Hong, L. Zhu, X. K. Bi, and T. Yuan, “Wideband Differentially Fed Patch Antennas under Dual High-Order Modes for Stable High Gain,” IEEE Trans. Antennas Propag., vol. 69, no. 1, pp. 508–513, Jan. 2021, doi: 10.1109/TAP.2020.3006394.

J. Anguera, S. Member, A. Andújar, and J. Jayasinghe, “High Directivity Microstrip Patch Antennas based on TM odd-0 modes,” vol. 1225, no. c, pp. 1–5, 2019, doi: 10.1109/LAWP.2019.2952260.

X. Zhang, L. Zhu, and Q. Wu, “Side-lobe-reduced and Gain-enhanced Square Patch Antennas with Adjustable Beamwidth under TM 03 Mode Operation,” no. c, 2018, doi: 10.1109/TAP.2018.2806220.

P. Juyal, L. Shafai, and L. Fellow, “A High Gain Single Feed Dual Mode Microstrip Disc Radiator,” no. c, 2016, doi: 10.1109/TAP.2016.2543804.

P. Juyal, L. Shafai, and L. Fellow, “Sidelobe Reduction of TM 12 mode of Circular Patch via Non Resonant Narrow Slot,” no. c, pp. 1–9, 2016, doi: 10.1109/TAP.2016.2576503.

X. Zhang, S. Member, and L. Zhu, “Gain-Enhanced Patch Antennas with Loading of Shorting Pins,” no. c, 2016, doi: 10.1109/TAP.2016.2573860.

Downloads

Published

2024-08-21

How to Cite

Muhammad Adil Khan, Shahid Bashir, Khan, A., & Muhammad Awais. (2024). Design and Analysis of Microstrip Patch Antenna Operating at Higher Order Mode. International Journal of Innovations in Science & Technology, 6(3), 1099–1109. Retrieved from https://journal.50sea.com/index.php/IJIST/article/view/937