Analyzing the Shadows: Machine Learning Approaches for Depression Detection on Twitter
Keywords:
Depression, Machine Learning, Major Depressive Disorder, Sentiment Analysis, SVM, Random ForestAbstract
Depression is a leading cause of disability worldwide, affecting approximately 4.4% of the global population. It can escalate from mild symptoms to severe outcomes, including suicide, if not treated early. Thus, developing systematic techniques for automatic detection is crucial. Social media platforms like Facebook, Twitter, TikTok, Snapchat, and Instagram provide users with the means to share personal feelings and daily activities, offering valuable insights into their thoughts and behaviors. This research aims to identify users who publicly disclosed their diagnosis and collect their data from Twitter. We created three different datasets, each varying in the number of tweets stored based on criteria discussed later. We selected six classifiers for analysis: Support Vector Machine (SVM), Logistic Regression, Random Forest, Max Vote Ensemble, Bagging, and Boosting. We conducted two analyses. In the first, textual data was converted into embeddings using the Bag of Words approach before analysis. In the second, a multivariate analysis, we trained algorithms on multi-dimensional data. Our findings revealed that Logistic Regression outperformed other techniques on smaller datasets. However, the Boosting algorithm yielded the best results on a dataset of 3,200 tweets, and the Bagging algorithm excelled when trained on 3,200 tweets of multivariate data. Overall, nearly all algorithms performed well on the 3,200-tweet datasets.
References
“Health and Depression”, [Online]. Available: https://www.who.int/health-topics/depression#tab=tab_1
A. M. Helmy, R. Nassar, and N. Ramdan, “Depression detection for twitter users using sentiment analysis in English and Arabic tweets,” Artif. Intell. Med., vol. 147, p. 102716, Jan. 2024, doi: 10.1016/J.ARTMED.2023.102716.
B. Chiranjeevi, V. Tejaswini, A. Mahesh, V. Sushmalatha, R. K. Karre, and M. A. Shaik, “Machine learning predictions for finding depression in Twitter,” AIP Conf. Proc., vol. 2971, no. 1, Jun. 2024, doi: 10.1063/5.0195849/3296131.
R. Safa, P. Bayat, and L. Moghtader, “Automatic detection of depression symptoms in twitter using multimodal analysis,” J. Supercomput., vol. 78, no. 4, pp. 4709–4744, Mar. 2022, doi: 10.1007/S11227-021-04040-8/FIGURES/13.
L. Bendebane, Z. Laboudi, A. Saighi, H. Al-Tarawneh, A. Ouannas, and G. Grassi, “A Multi-Class Deep Learning Approach for Early Detection of Depressive and Anxiety Disorders Using Twitter Data,” Algorithms 2023, Vol. 16, Page 543, vol. 16, no. 12, p. 543, Nov. 2023, doi: 10.3390/A16120543.
D. A. Musleh et al., “Twitter Arabic Sentiment Analysis to Detect Depression Using Machine Learning,” Comput. Mater. Contin., vol. 71, no. 2, pp. 3463–3477, Dec. 2021, doi: 10.32604/CMC.2022.022508.
V. Tejaswini, K. S. Babu, and B. Sahoo, “Depression Detection from Social Media Text Analysis using Natural Language Processing Techniques and Hybrid Deep Learning Model,” ACM Trans. Asian Low-Resource Lang. Inf. Process., vol. 23, no. 1, Jan. 2024, doi: 10.1145/3569580.
Y. W. Abuhasirah, “Data Mining Approaches for Depression Detection on Social Media Twitter Dataset,” Stud. Syst. Decis. Control, vol. 503, pp. 199–218, 2024, doi: 10.1007/978-3-031-43490-7_15.
“WHO, ‘Depression,’ World Health Organization”, [Online]. Available: https://www.who.int/news-room/fact-sheets/detail/depression
“Depression Statistics Everyone Should Know.” Accessed: Sep. 08, 2024. [Online]. Available: https://www.verywellmind.com/depression-statistics-everyone-should-know-4159056
“Types of Depression: Major, Chronic, Manic, and More Types.” Accessed: Sep. 08, 2024. [Online]. Available: https://www.webmd.com/depression/depression-types#1
D. J. DeNoon, “Symptoms of Depression”, [Online]. Available: https://www.webmd.com/depression/guide/detecting-depression#1
L. S. Radloff, “The CES-D Scale: A Self-Report Depression Scale for Research in the General Population”, Accessed: Sep. 08, 2024. [Online]. Available: http://www.copyright.com/
A. T. Beck, C. H. Ward, M. Mendelson, J. Mock, and J. Erbaugh, “An Inventory for Measuring Depression,” Arch. Gen. Psychiatry, vol. 4, no. 6, pp. 561–571, Jun. 1961, doi: 10.1001/ARCHPSYC.1961.01710120031004.
J. S. L. Figuerêdo, A. L. L. M. Maia, and R. T. Calumby, “Early depression detection in social media based on deep learning and underlying emotions,” Online Soc. Networks Media, vol. 31, p. 100225, Sep. 2022, doi: 10.1016/J.OSNEM.2022.100225.
W. W. K. Zung, C. B. Richards, and M. J. Short, “Self-Rating Depression Scale in an Outpatient Clinic: Further Validation of the SDS,” Arch. Gen. Psychiatry, vol. 13, no. 6, pp. 508–515, Dec. 1965, doi: 10.1001/ARCHPSYC.1965.01730060026004.
R. Salas-Zárate, G. Alor-Hernández, M. D. P. Salas-Zárate, M. A. Paredes-Valverde, M. Bustos-López, and J. L. Sánchez-Cervantes, “Detecting Depression Signs on Social Media: A Systematic Literature Review,” Healthc. 2022, Vol. 10, Page 291, vol. 10, no. 2, p. 291, Feb. 2022, doi: 10.3390/HEALTHCARE10020291.
“Identifying Depression on Twitter.” Accessed: Sep. 08, 2024. [Online]. Available: https://www.researchgate.net/publication/305638561_Identifying_Depression_on_Twitter
K. M. Hasib, M. R. Islam, S. Sakib, M. A. Akbar, I. Razzak, and M. S. Alam, “Depression Detection From Social Networks Data Based on Machine Learning and Deep Learning Techniques: An Interrogative Survey,” IEEE Trans. Comput. Soc. Syst., vol. 10, no. 4, pp. 1568–1586, Aug. 2023, doi: 10.1109/TCSS.2023.3263128.
A. M. Bucur, A. Cosma, P. Rosso, and L. P. Dinu, “It’s Just a Matter of Time: Detecting Depression with Time-Enriched Multimodal Transformers,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 13980 LNCS, pp. 200–215, 2023, doi: 10.1007/978-3-031-28244-7_13.
D. Liu, X. L. Feng, F. Ahmed, M. Shahid, and J. Guo, “Detecting and Measuring Depression on Social Media Using a Machine Learning Approach: Systematic Review.,” JMIR Ment. Heal., vol. 9, no. 3, p. e27244, Mar. 2022, doi: 10.2196/27244.
U. Naseem, A. G. Dunn, J. Kim, and M. Khushi, “Early Identification of Depression Severity Levels on Reddit Using Ordinal Classification,” WWW 2022 - Proc. ACM Web Conf. 2022, pp. 2563–2572, Apr. 2022, doi: 10.1145/3485447.3512128.
S. S. Korti and S. G. Kanakaraddi, “Depression detection from Twitter posts using NLP and Machine learning techniques,” 4th Int. Conf. Emerg. Res. Electron. Comput. Sci. Technol. ICERECT 2022, 2022, doi: 10.1109/ICERECT56837.2022.10059773.
M. Kabir et al., “DEPTWEET: A typology for social media texts to detect depression severities,” Comput. Human Behav., vol. 139, p. 107503, Feb. 2023, doi: 10.1016/J.CHB.2022.107503.
W. L. Tey, H. N. Goh, A. H. L. Lim, and C. K. Phang, “Pre- and Post-Depressive Detection using Deep Learning and Textual-based Features,” Int. J. Technol., vol. 14, no. 6, pp. 1334–1343, 2023, doi: 10.14716/IJTECH.V14I6.6648.
R. J. Lia, A. B. Siddikk, F. Muntasir, S. S. M. M. Rahman, and N. Jahan, “Depression Detection from Social Media Using Twitter’s Tweet,” Stud. Comput. Intell., vol. 994, pp. 209–226, 2022, doi: 10.1007/978-3-030-87954-9_9.
A. Shankdhar, R. Mishra, and N. Shukla, “An Application of Deep Learning in Identification of Depression Among Twitter Users,” pp. 661–669, 2022, doi: 10.1007/978-981-16-3071-2_54.
K. Sampath and T. Durairaj, “Data set creation and empirical analysis for detecting signs of depression from social media postings,” IFIP Adv. Inf. Commun. Technol., vol. 654 IFIP, pp. 136–151, Feb. 2022, doi: 10.1007/978-3-031-16364-7_11.
K. Cornn, “Identifying Depression on Social Media”, [Online]. Available: https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1194/reports/custom/15712307.pdf
B. Kaushik, A. Sharma, A. Chadha, and R. Sharma, “Machine Learning Model for Sentiment Analysis on Mental Health Issues,” 2023 15th Int. Conf. Comput. Autom. Eng. ICCAE 2023, pp. 21–25, 2023, doi: 10.1109/ICCAE56788.2023.10111148.
J. D. Akinyemi, A. O. J. Ibitoye, C. T. Oyewale, and O. F. W. Onifade, “Cyberbullying Detection and Classification in Social Media Texts Using Machine Learning Techniques,” Lect. Notes Data Eng. Commun. Technol., vol. 181, pp. 440–449, 2023, doi: 10.1007/978-3-031-36118-0_40.
N. Firoz, O. G. Beresteneva, A. S. Vladimirovich, M. S. Tahsin, and F. Tafannum, “Automated Text-based Depression Detection using Hybrid ConvLSTM and Bi-LSTM Model,” Proc. 3rd Int. Conf. Artif. Intell. Smart Energy, ICAIS 2023, pp. 734–740, 2023, doi: 10.1109/ICAIS56108.2023.10073683.
A. Amanat et al., “Deep Learning for Depression Detection from Textual Data,” Electron. 2022, Vol. 11, Page 676, vol. 11, no. 5, p. 676, Feb. 2022, doi: 10.3390/ELECTRONICS11050676.
U. of P. Philadelphia, “LEXHUB - Lexicon Tool,” Lexhub.org, 2022, [Online]. Available: https://lexhub.org/wlt/lexica.html
D. R. Jyothi Prasanth, J. Dhalia Sweetlin, and S. Sruthi, “Exploring Human Emotions for Depression Detection from Twitter Data by Reducing Misclassification Rate,” pp. 127–135, 2022, doi: 10.1007/978-981-16-3802-2_10.
H. Zogan, I. Razzak, X. Wang, S. Jameel, and G. Xu, “Explainable depression detection with multi-aspect features using a hybrid deep learning model on social media,” World Wide Web, vol. 25, no. 1, pp. 281–304, Jan. 2022, doi: 10.1007/S11280-021-00992-2/FIGURES/9.
F. Azam, M. Agro, M. Sami, M. H. Abro, and A. Dewani, “Identifying Depression among Twitter Users using Sentiment Analysis,” 2021 Int. Conf. Artif. Intell. ICAI 2021, pp. 44–49, Apr. 2021, doi: 10.1109/ICAI52203.2021.9445271.
B. Nurfadhila and A. S. Girsang, “Identifying Indication of Depression of Twitter User in Indonesia Using Text Mining,” Int. J. Intell. Syst. Appl. Eng., vol. 11, no. 2, pp. 523–530, Feb. 2023, Accessed: Sep. 08, 2024. [Online]. Available: https://ijisae.org/index.php/IJISAE/article/view/2663
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 50SEA
This work is licensed under a Creative Commons Attribution 4.0 International License.