Comparison of IoT Messaging Protocols: A novel Crop-Specific Protocol for Wheat, Banana, and Chili
Keywords:
Messaging Protocols, MQTT, AMQP, HTTP, Crop SpecificAbstract
IoT systems mostly depend on messaging protocols to facilitate the exchange of IoT data, with various protocols or frameworks available to support different types of messaging patterns. Choosing a suitable IoT messaging protocol for a specific application is a significant task. It is crucial to select a protocol that meets criteria such as reliability, lightweight, scalability, extensibility, interoperability, and security. It is crucial to opt for a protocol that meets criteria such as being reliable, lightweight, scalable, extensible, interoperable, and secure. With the increasing prevalence of machine-to-machine communication, numerous standardized communication protocols have emerged for IoT applications. However, performance characteristics of IoT protocols can vary expressively, even when operating under the same conditions. This research paper presents a quantitative comparison of three well-known IoT messaging protocols: MQTT (Message Queuing Telemetry Transport), AMQP (Advance Message Queuing Protocol), and HTTP (Hypertext Transfer Protocol). This research focuses on comparison of existing protocols to latency and throughput. A novel crop-specific protocol is also designed for wheat, Banana, and chili crops.
References
I. Has, M., Kreković, D., Kušek, M., & Podnar Žarko, “Efficient Data Management in Agricultural IoT: Compression, Security, and MQTT Protocol Analysis,” Sensors, vol. 24, no. 11, p. 3517, 2024, doi: https://doi.org/10.3390/s24113517.
E. A.-M. et Al, “Investigating Messaging Protocols for the Internet of Things (IoT),” IEEE Access, vol. 8, pp. 94880–94911, 2020, doi: 10.1109/ACCESS.2020.2993363.
N. Naik, “Choice of effective messaging protocols for IoT systems: MQTT, CoAP, AMQP and HTTP,” 2017 IEEE Int. Symp. Syst. Eng. ISSE 2017 - Proc., Oct. 2017, doi: 10.1109/SYSENG.2017.8088251.
P. Singh, M. Kaur, and R. Bajaj, “An IoT-Enabled Crop Recommendation System Utilizing MQTT for Efficient Data Transmission to AI/ML Model,” Proc. Int. Conf. Circuit Power Comput. Technol. ICCPCT 2024, pp. 315–320, 2024, doi: 10.1109/ICCPCT61902.2024.10672704.
M. O. Al Enany, H. M. Harb, and G. Attiya, “A comparative analysis of MQTT and IoT application protocols,” ICEEM 2021 - 2nd IEEE Int. Conf. Electron. Eng., Jul. 2021, doi: 10.1109/ICEEM52022.2021.9480384.
I. Gerodimos, A., Maglaras, L., Ferrag, M. A., Ayres, N., & Kantzavelou, “IoT: Communication protocols and security threats,” Internet Things Cyber-Physical Syst., vol. 3, pp. 1–13, 2023, doi: https://doi.org/10.1016/j.iotcps.2022.12.003.
D. K. Bhoi, S. K., Ghugar, U., Dash, S., Nayak, R., & Bagal, “Exploring The Security Landscape: A Comprehensive Analysis Of Vulnerabilities, Challenges, And Findings In Internet Of Things (Iot) Application Layer Protocols,” Migr. Lett., vol. 21, no. s6, pp. 1326–1342, 2024, [Online]. Available: https://migrationletters.com/index.php/ml/article/view/8265
M. B. Yassein, M. Q. Shatnawi, S. Aljwarneh, and R. Al-Hatmi, “Internet of Things: Survey and open issues of MQTT protocol,” Proc. - 2017 Int. Conf. Eng. MIS, ICEMIS 2017, vol. 2018-January, pp. 1–6, Jul. 2017, doi: 10.1109/ICEMIS.2017.8273112.
T. Moraes, B. Nogueira, V. Lira, and E. Tavares, “Performance comparison of iot communication protocols,” Conf. Proc. - IEEE Int. Conf. Syst. Man Cybern., vol. 2019-October, pp. 3249–3254, Oct. 2019, doi: 10.1109/SMC.2019.8914552.
M. Diwan and M. D’Souza, “A Framework for Modeling and Verifying IoT Communication Protocols,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 10606 LNCS, pp. 266–280, 2017, doi: 10.1007/978-3-319-69483-2_16.
A. N. Erdal ÖZDOĞAN, Osman Ayhan ERDEM and ÖZALP, “Adaptive Hybrid Application Protocol for IoT,” Acta Polytech. Hungarica, vol. 21, no. 2, 2024, [Online]. Available: https://acta.uni-obuda.hu/Ozdogan_Erdem_Ozalp_142.pdf
“(PDF) A SURVEY ON MQTT: A PROTOCOL OF INTERNET OF THINGS(IOT).” Accessed: Dec. 29, 2024. [Online]. Available: https://www.researchgate.net/publication/316018571_A_SURVEY_ON_MQTT_A_PROTOCOL_OF_INTERNET_OF_THINGSIOT
S. Lakshminarayana, A. Praseed, and P. S. Thilagam, “Securing the IoT Application Layer from an MQTT Protocol Perspective: Challenges and Research Prospects,” IEEE Commun. Surv. Tutorials, 2024, doi: 10.1109/COMST.2024.3372630.
N. Nikolov, “Research of MQTT, CoAP, HTTP and XMPP IoT Communication protocols for Embedded Systems,” 2020 29th Int. Sci. Conf. Electron. 2020 - Proc., Sep. 2020, doi: 10.1109/ET50336.2020.9238208.
F. M. Khalid M. Hosny, Walaa M. El-Hady Samy, “Technologies, Protocols, and applications of Internet of Things in greenhouse Farming: A survey of recent advances,” Inf. Process. Agric., 2024, doi: https://doi.org/10.1016/j.inpa.2024.04.002.
B. Wukkadada, K. Wankhede, R. Nambiar, and A. Nair, “Comparison with HTTP and MQTT in Internet of Things (IoT),” Proc. Int. Conf. Inven. Res. Comput. Appl. ICIRCA 2018, pp. 249–253, Dec. 2018, doi: 10.1109/ICIRCA.2018.8597401.
R. Thakur, Rohit Kumar; Kumari, “A Comparison of Various IoT Application Layer Protocol,” Am. J. Electron. Commun., vol. 3, no. 1, pp. 28–34, 2022, doi: https://doi.org/10.15864/ajec.3106.
C. Sharma and N. K. Gondhi, “Communication Protocol Stack for Constrained IoT Systems,” Proc. - 2018 3rd Int. Conf. Internet Things Smart Innov. Usages, IoT-SIU 2018, Nov. 2018, doi: 10.1109/IOT-SIU.2018.8519904.
N. Q. Uy and V. H. Nam, “A comparison of AMQP and MQTT protocols for Internet of Things,” Proc. - 2019 6th NAFOSTED Conf. Inf. Comput. Sci. NICS 2019, pp. 292–297, Dec. 2019, doi: 10.1109/NICS48868.2019.9023812.
P. Kiran and S. Shilpa, “Secure Communication Protocols for the IoT,” Secur. Commun. Internet Things Emerg. Technol. Challenges, Mitig., pp. 142–152, Jan. 2024, doi: 10.1201/9781003477327-12/SECURE-COMMUNICATION-PROTOCOLS-IOT-PRATHIBHA-KIRAN-SHILPA.
A. Kondoro, I. Ben Dhaou, H. Tenhunen, and N. Mvungi, “Real time performance analysis of secure IoT protocols for microgrid communication,” Futur. Gener. Comput. Syst., vol. 116, pp. 1–12, Mar. 2021, doi: 10.1016/J.FUTURE.2020.09.031.
H. ightiz, L., Yang, “A Comprehensive Review on IoT Protocols’ Features in Smart Grid Communication,” Energies, vol. 13, no. 11, p. 2762, 2020, doi: https://doi.org/10.3390/en13112762.
I. Ben Hafaiedh, “Formal models for the verification, performance evaluation, and comparison of IoT communication protocols,” NCA 2022 - 2022 IEEE 21st Int. Symp. Netw. Comput. Appl., pp. 131–138, 2022, doi: 10.1109/NCA57778.2022.10013626.
R. A. ALight, “Mosquitto: server and client implementation of the MQTT protocol,” J. Open Source Softw., vol. 2, no. 13, p. 265, 2017, doi: https://joss.theoj.org/papers/10.21105/joss.00265.
P. Bhimani and G. Panchal, “Message Delivery Guarantee and Status Update of Clients Based on IoT-AMQP,” Lect. Notes Networks Syst., vol. 19, pp. 15–22, 2018, doi: 10.1007/978-981-10-5523-2_2.
J. E. Luzuriaga, M. Perez, P. Boronat, J. C. Cano, C. Calafate, and P. Manzoni, “A comparative evaluation of AMQP and MQTT protocols over unstable and mobile networks,” 2015 12th Annu. IEEE Consum. Commun. Netw. Conf. CCNC 2015, pp. 931–936, Jul. 2015, doi: 10.1109/CCNC.2015.7158101.
M. Singh, M. A. Rajan, V. L. Shivraj, and P. Balamuralidhar, “Secure MQTT for Internet of Things (IoT),” Proc. - 2015 5th Int. Conf. Commun. Syst. Netw. Technol. CSNT 2015, pp. 746–751, Sep. 2015, doi: 10.1109/CSNT.2015.16.
“MPInspector: A Systematic and Automatic Approach for Evaluating the Security of IoT Messaging Protocols | Request PDF.” Accessed: Dec. 29, 2024. [Online]. Available: https://www.researchgate.net/publication/362789914_MPInspector_A_Systematic_and_Automatic_Approach_for_Evaluating_the_Security_of_IoT_Messaging_Protocols
M. H. R. Ronok Bhowmik, “An extended review of the application layer messaging protocol of the internet of things,” Bull. Electr. Eng. Informatics, vol. 12, no. 5, pp. 3134–3141, 2023, doi: https://doi.org/10.11591/eei.v12i5.5236.
B. B. L. Barlin O. Olivares, Julio Calero, Juan C. Rey, Deyanira Lobo and J. A. Gómez, “Correlation of banana productivity levels and soil morphological properties using regularized optimal scaling regression,” CATENA, vol. 208, p. 105718, 2022, doi: https://doi.org/10.1016/j.catena.2021.105718.
G. H. J. K. & J. A. S. R. A. Segura-Mena, J. J. Stoorvogel, F. García-Bastidas, M. Salacinas-Niez, “Evaluating the potential of soil management to reduce the effect of Fusarium oxysporum f. sp. cubense in banana (Musa AAA),” Eur. J. Plant Pathol., vol. 160, pp. 441–455, 2021, doi: https://doi.org/10.1007/s10658-021-02255-2.
H. Cui, Y. Luo, J. Chen, M. Jin, Y. Li, and Z. Wang, “Straw return strategies to improve soil properties and crop productivity in a winter wheat-summer maize cropping system,” Eur. J. Agron., vol. 133, p. 126436, Feb. 2022, doi: 10.1016/J.EJA.2021.126436.
P. Malik, S. Sengupta, and J. S. Jadon, “Comparative Analysis of Soil Properties to Predict Fertility and Crop Yield using Machine Learning Algorithms,” Proc. Conflu. 2021 11th Int. Conf. Cloud Comput. Data Sci. Eng., pp. 1004–1007, Jan. 2021, doi: 10.1109/CONFLUENCE51648.2021.9377147.
A. Khan, Muhammad Naeem, Rab, M. W. Khan, I. ud Din, and M. Khan, Muhammad Arif Khan, Muhammad Ayaz Ahmad, “Effect of zinc and boron on the growth and yield of chilli under the agro climatic condition of Swat,” Res. Artic., vol. 11, no. 3, pp. 835–842, 2022, doi: http://dx.doi.org/10.19045/bspab.2022.110084.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 50sea
This work is licensed under a Creative Commons Attribution 4.0 International License.