CLFT: An Optimized Hybrid Cross-Layer Fusion Transformer for Accurate Fake Profile Detection on Social Media
Keywords:
Fake profile detection, Transformer architecture, multi-head self-attention, User behavior metrics, Hyperparameter optimization, social media securityAbstract
The rapid increase of fake profiles on social media platforms has raised significant concerns regarding online authenticity, user trust, and digital security. Despite various efforts to combat this issue, existing detection methods often fall short due to the evolving nature of fake profiles and the noisy, high-dimensional data involved. This study proposes an optimized Hybrid Cross-Layer Fusion Transformer (CLFT) for detecting fake profiles by analyzing behavioral metadata. The CLFT architecture integrates multi-stage attention mechanisms, including Cross-Layer Fusion Attention (CLFA), Sparse–Dense Hybrid Attention (SDHA), and Temporal-Behavior Embedding Blocks (TBEB), to effectively capture both short- and long-term dependencies in user activities. The model hyperparameters were optimized using the Bayesian Optimization Hyperband (BOHB) framework. Experimental results on a real-world social media dataset show that the proposed model outperforms traditional machine learning techniques and previous Transformer-based models, achieving an accuracy of 99.10%, precision of 99.89%, recall of 99.55%, and an F1-score of 99.72%. Furthermore, the attention mechanisms enhance interpretability by emphasizing the most influential behavioral features, contributing to the model’s transparency and reliability. The findings highlight that Transformer-based models, especially the CLFT, provide a scalable and efficient solution for fake profile detection in noisy environments, with important implications for enhancing social media security. The study emphasizes the need for interpretability in automated detection systems, fostering trust and ensuring better user engagement and platform integrity.
References
K. K. Bade B Sudarshan Chakravarthy Uma Rani, “Data-Driven Insights Into Social Media’s Effectiveness In Digital Communication,” Proc. Eng. Sci., vol. 6, no. 2, pp. 637–644, 2024, doi: 10.24874/PES06.02.020.
F. Miró-Llinares and J. C. Aguerri, “Misinformation about fake news: A systematic critical review of empirical studies on the phenomenon and its status as a ‘threat,’” Eur. J. Criminol., vol. 20, no. 1, pp. 356–374, Jan. 2023, doi: 10.1177/1477370821994059;Page:String:Article/Chapter.
L. K. Daniyal Amankeldin, “Deep Neural Network for Detecting Fake Profiles in Social Networks,” Comput. Syst. Sci. Eng., vol. 47, no. 1, pp. 1091–1108, 2023, doi: https://doi.org/10.32604/csse.2023.039503.
Ashraf jalal yousef Zaidieh, “Combatting Cybersecurity Threats on Social Media: Network Protection and Data Integrity Strategies,” J. Artif. Intell. Comput. Technol., vol. 1, no. 1, 2024, doi: https://doi.org/10.70274/jaict.2024.1.1.32.
M. H. & T. A. N. A. Amber Sarfraz, Adnan Ahmad, Frukh Zeshan, “Unmasking deception: detection of fake profiles in online social ecosystems,” J. Big Data, vol. 12, no. 214, 2025, doi: https://doi.org/10.1186/s40537-025-01254-y.
M. Sameer, “Revolutionizing Cybersecurity: The Role of Artificial Intelligence in Advanced Threat Detection and Response,” Int. J. Appl. Math. Comput. Sci., 2024, [Online]. Available: https://www.researchgate.net/publication/378156991_Revolutionizing_Cybersecurity_The_Role_of_Artificial_Intelligence_in_Advanced_Threat_Detection_and_Response
P. K. Shukla, B. D. Veerasamy, N. Alduaiji, S. R. Addula, S. Sharma, and P. K. Shukla, “Encoder only attention-guided transformer framework for accurate and explainable social media fake profile detection,” Peer-to-Peer Netw. Appl. 2025 184, vol. 18, no. 4, pp. 232-, Jul. 2025, doi: 10.1007/S12083-025-02047-Z.
F. M. K. Zahid Iqbal, “Fake News Identification in Urdu Tweets Using Machine Learning Models,” Asian Bull. Big Data Manag., 20224, [Online]. Available: https://abbdm.com/index.php/Journal/article/view/105
A. Shukla, S. Chaurasia, T. Asthana, T. N. Prajapati, and V. Kushwaha, “Fake social media profile detection using machine learning,” Emerg. Trends Comput. Sci. Its Appl., pp. 432–436, Apr. 2025, doi: 10.1201/9781003606635-74/Fake-Social-Media-Profile-Detection-Using-Machine-Learning-Anurag-Shukla-Shreya-Chaurasia-Tanushri-Asthana-Tej-Narayan-Prajapati-Vivek-Kushwaha.
A. Mughaid et al., “A novel machine learning and face recognition technique for fake accounts detection system on cyber social networks,” Multimed. Tools Appl. 2023 8217, vol. 82, no. 17, pp. 26353–26378, Jan. 2023, doi: 10.1007/S11042-023-14347-8.
L. Selvam, E. S. Vinothkumar, R. S. Krishnan, G. V. Rajkumar, J. R. F. Raj, and P. S. R. Malar, “A Unified Deep Learning Model for Fake Account Identification using Transformer-based NLP and Graph Neural Networks,” Proc. 8th Int. Conf. Inven. Comput. Technol. ICICT 2025, pp. 1033–1040, 2025, doi: 10.1109/ICICT64420.2025.11005045.
S. Munji, “Fake Profile Detection Using Machine Learning,” Int. J. Sci. Res., pp. 344–349, Oct. 2025, doi: 10.21275/SR251009132008.
“(PDF) Natural Language Processing (NLP) for Detecting Fake Profiles via Content Analysis.” Accessed: Dec. 23, 2025. [Online]. Available: https://www.researchgate.net/publication/392601577_Natural_Language_Processing_NLP_for_Detecting_Fake_Profiles_via_Content_Analysis
D. A. Dat Nguyen, Marcella Astrid, Enjie Ghorbel, “FakeFormer: Efficient Vulnerability-Driven Transformers for Generalisable Deepfake Detection,” arXiv:2410.21964, 2024, doi: https://doi.org/10.48550/arXiv.2410.21964.
B. L. V. S. A. and S. N. Mohanty, “Heterogenous Social Media Analysis for Efficient Deep Learning Fake-Profile Identification,” IEEE Access, vol. 11, pp. 99339–99351, 2023, doi: 10.1109/ACCESS.2023.3313169.
M. Swarna Sudha, S. Manjula, I. Bharathi, V. Krishnasamy, and K. Vijayalakshmi, “DeepFakeGuard: Safeguarding Digital Platforms Against Fake Profiles Using AI,” 4th Int. Conf. Sentim. Anal. Deep Learn. ICSADL 2025 - Proc., pp. 1293–1299, 2025, doi: 10.1109/ICSADL65848.2025.10933074.
S. J. Manu Vasudevan Unni, “Enhancing authenticity and trust in social media: an automated approach for detecting fake profiles,” Indones. J. Electr. Eng. Comput. Sci., vol. 35, no. 1, 2024, [Online]. Available: https://ijeecs.iaescore.com/index.php/IJEECS/article/view/36403
S. N. Deepak Kumar Jain, “A knowledge-Aware NLP-Driven conversational model to detect deceptive contents on social media posts,” Comput. Speech Lang., vol. 90, p. 101743, 2025, doi: https://doi.org/10.1016/j.csl.2024.101743.
A. M. Massimo La Morgia, “Pretending to be a VIP! Characterization and Detection of Fake and Clone Channels on Telegram,” ACM Trans. Web, vol. 19, no. 2, pp. 1–24, 2025, doi: https://doi.org/10.1145/3705014.
M. D. D. Chathurangi, M. G. K. Nayanathara, K. M. H. M. M. Gunapala, G. M. R. G. Dayananda, K. Y. Abeywardena, and D. Siriwardana, “Detecting Cyberbullying, Spam and Bot Behavior, Fake News in Social Media Accounts Using Machine Learning,” Lect. Notes Networks Syst., vol. 1177, pp. 307–320, 2025, doi: 10.1007/978-981-97-8695-4_29.
R. M. Mohammad Majid Akhtar, “SoK: False Information, Bots and Malicious Campaigns: Demystifying Elements of Social Media Manipulations,” ASIA CCS ’24 Proc. 19th ACM Asia Conf. Comput. Commun. Secur., 2024, doi: https://doi.org/10.1145/3634737.3644998.
N. George, A. Sham, T. Ajith, and M. T. Bastos, “Forty Thousand Fake Twitter Profiles: A Computational Framework for the Visual Analysis of Social Media Propaganda,” SSRN Electron. J., Sep. 2023, doi: 10.2139/SSRN.4899259.
Z. Khan, Z. Khan, B.-G. Lee, H. K. Kim, and M. Jeon, “Graph Neural Networks Based Framework to Analyze Social Media Platforms for Malicious User Detection,” 2023, doi: 10.2139/SSRN.4355125.
V. U. Gongane, M. V. Munot, and A. D. Anuse, “A survey of explainable AI techniques for detection of fake news and hate speech on social media platforms,” J. Comput. Soc. Sci. 2024 71, vol. 7, no. 1, pp. 587–623, Mar. 2024, doi: 10.1007/S42001-024-00248-9.
Y. T. W. Li Chen Cheng, “Detecting fake reviewers from the social context with a graph neural network method,” Decis. Support Syst., vol. 179, p. 114150, 2024, doi: https://doi.org/10.1016/j.dss.2023.114150.
Q. C. Tianrui Liu, “Rumor Detection with A Novel Graph Neural Network Approach,” Acad. J. Sci. Technol., vol. 10, no. 1, 2024, [Online]. Available: https://drpress.org/ojs/index.php/ajst/article/view/19207
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 50SEA

This work is licensed under a Creative Commons Attribution 4.0 International License.


















