Spectral Profiles to Minerals Identification: An Integrated Hyperspectral vs Multispectral Minerals Exploration of the Ophiolitic Belt of Qilla Saifullah District, Baluchistan

Authors

  • Abdul Mohsin National University of Sciences & Technology, School of Civil and Environmental Engineering, Institute of Geographical Information System, H-12, Islamabad, Pakistan
  • Javed Iqbal National University of Sciences & Technology, School of Civil and Environmental Engineering, Institute of Geographical Information System, H-12, Islamabad, Pakistan
  • Junaid Aziz Khan National University of Sciences & Technology, School of Civil and Environmental Engineering, Institute of Geographical Information System, H-12, Islamabad, Pakistan
  • Abdul Jabbar Khan National University of Sciences & Technology, School of Civil and Environmental Engineering, Institute of Geographical Information System, H-12, Islamabad, Pakistan
  • Krystyna Michalowska AGH University of Krakow Poland

Keywords:

Ophiolites, Hyperspectral, Multispectral, Diagnostic Absorption Features, Alteration Minerals, USGS Spectral Library

Abstract

Baluchistan, the largest province of Pakistan, hosts abundant metallic and non-metallic mineral resources, particularly copper, gold, chromite, lead-zinc, and rare earth elements, making it a strategic region for mineral exploration and geological characterization. Despite such potential, mineral exploration in the province’s ophiolitic belts remains limited by sparse ground surveys, logistical challenges, and incomplete spatial coverage. To address this gap, the present study aimed to (1) Key ophiolitic minerals (chromite, serpentine, magnesite) and associated lithologies with high spectral precision, and (2) Compare hyperspectral and multispectral sensors for mineral identification and mapping. The methodology integrated ZiYuan-1 02D (ZY-1E) hyperspectral satellite data (spectral range 0.4–2.5 µm) with advanced spectral analysis techniques i.e. Diagnostic Absorption Feature extraction, Spectral Matching against the United States Geological Survey (USGS) Spectral Library, and multiple classifiers including Spectral Angle Mapper (SAM), Spectral Feature Fitting (SFF), Random Forest (RF), and targeted band ratios/indices. Mineral point data and lithological maps from the Geological Survey of Pakistan (GSP) were used for accuracy assessment. For comparative analysis, multispectral datasets from ASTER, Landsat-8 OLI, and Sentinel-2 MSI were processed, with a focus on the efficacy of SWIR coverage for mineral detection. Results indicated that ZY-1E hyperspectral data achieved 81.82% mineral classification accuracy and 86.11% lithology mapping accuracy, with Band Ratio techniques emerging as a rapid detection tool. Among multispectral datasets, ASTER outperformed Landsat-8 and Sentinel-2 due to its six SWIR bands, enabling superior discrimination of OH-, Al-, and carbonate-bearing minerals. The study concludes that hyperspectral imagery, due to its high spectral resolution, is indispensable for precise mapping of minerals and lithology in rugged, inaccessible terrains. However, ASTER remains a cost-effective alternative for targeted mapping of alteration minerals where hyperspectral coverage is unavailable. It is recommended to integrate hyperspectral mapping in strategic exploration campaigns to accelerate mineral resource assessment in underexplored regions of the world.

References

M. S. Malkani, “Revised Stratigraphy and Mineral Resources of Balochistan Basin, Pakistan: An Update,” Open J. Geol., vol. 10, no. 7, pp. 784–828, 2020, [Online]. Available: https://www.researchgate.net/publication/343284097_Revised_Stratigraphy_and_Mineral_Resources_of_Balochistan_Basin_Pakistan_An_Update

“Heron, A.M. (1950) Directory of Economic Minerals. Geological Survey of Pakistan, Record, 1, Part II, 1-69. - References - Scientific Research Publishing.” Accessed: Jan. 11, 2026. [Online]. Available: https://www.scirp.org/reference/referencespapers?referenceid=3921348

“Ahmad, Z. (1969) Directory of Mineral Deposits of Pakistan. Geological Survey of Pakistan, Record, 15, 1-200. - References - Scientific Research Publishing.” Accessed: Jan. 11, 2026. [Online]. Available: https://www.scirp.org/reference/referencespapers?referenceid=2766118

“Gauher, S.H. (1969) Economic Minerals of Pakistan A Brief Review. Geological Survey of Pakistan, Pre Publication Issue 88, 1-110. - References - Scientific Research Publishing.” Accessed: Jan. 11, 2026. [Online]. Available: https://www.scirp.org/reference/referencespapers?referenceid=2805555

M. Abrams and Y. Yamaguchi, “Twenty years of ASTER contributions to lithologic mapping and mineral exploration,” Remote Sens., vol. 11, no. 11, Jun. 2019, doi: 10.3390/RS11111394.

“Metallogeny and Mineral Potential of Pakistan.” Accessed: Jan. 11, 2026. [Online]. Available:https://www.researchgate.net/publication/393744495_Metallogeny_and_Mineral_Potential_of_Pakistan

“Mineral Resources of Pakistan: A Review.” Accessed: Jan. 11, 2026. [Online]. Available: https://www.researchgate.net/publication/305942087_Mineral_Resources_of_Pakistan_A_Review

“Mineral Resources of Pakistan: Provinces and Basins wise.” Accessed: Jan. 11, 2026. [Online].Available:https://www.researchgate.net/publication/315834509_Mineral_Resources_of_Pakistan_Provinces_and_Basins_wise

“Mineral Resources of Pakistan-an update.” Accessed: Jan. 11, 2026. [Online]. Available: https://www.researchgate.net/publication/315707448_Mineral_Resources_of_Pakistan-an_update

“Stratigraphy, Mineral Potential, Geological History and Paleobiogeography of Balochistan Province, Pakistan.” Accessed: Jan. 11, 2026. [Online]. Available: https://www.researchgate.net/publication/282330367_Stratigraphy_Mineral_Potential_Geological_History_and_Paleobiogeography_of_Balochistan_Province_Pakistan

“Mineral Resources of Balochistan Province, Pakistan.” Accessed: Jan. 11, 2026. [Online]. Available:https://www.researchgate.net/publication/315834485_Mineral_Resources_of_Balochistan_Province_Pakistan

“Reconnaissance geology of part of west Pakistan.” Accessed: Jan. 11, 2026. [Online]. Available: https://nla.gov.au/nla.obj-234411506/view

“Islam, N.U., Hussain, S.A., Abbas, S.Q. and Ashraf, M. (2010) Mineral Statistics of Pakistan. Geological Survey of Pakistan, Special Issue. - References - Scientific Research Publishing.” Accessed: Jan. 11, 2026. [Online]. Available: https://www.scirp.org/reference/referencespapers?referenceid=2805698

“Jan, M.Q. and Gauhar, S.H. (2013) Earth Sciences and Mineral Exploration History of Pakistan with Reference to Khyber Pakhtunkhwa and Its Adjacent Tribal Areas. Abstract Volume, Sustainable Utilization of Natural Resources of the Khyber Pakhtunkhwa and” Accessed: Jan. 11, 2026. [Online]. Available:

https://www.scirp.org/%28S%28mllvtr455ztxky45opcgzyis%29%29/reference/referencespapers?referenceid=2791351

H. M. Rajesh, “Application of remote sensing and GIS in mineral: Resource mapping - An overview,” J. Mineral. Petrol. Sci., vol. 99, no. 3, 2024, [Online]. Available: https://www.researchgate.net/publication/45363148_Application_of_remote_sensing_and_GIS_in_mineral_Resource_mapping_-_An_overview

R. Rajan Girija and S. Mayappan, “Mapping of mineral resources and lithological units: a review of remote sensing techniques,” Int. J. Image Data Fusion, vol. 10, no. 2, pp. 79–106, Apr. 2019, doi: 10.1080/19479832.2019.1589585.

M. H. Amin B. Pour, “Detection of hydrothermal alteration zones in a tropical region using satellite remote sensing data: Bau goldfield, Sarawak, Malaysia,” Ore Geol. Rev., vol. 54, 2013, [Online]. Available:

https://www.researchgate.net/publication/236179595_Detection_of_hydrothermal_alteration_zones_in_a_tropical_region_using_satellite_remote_sensing_data_Bau_goldfield_Sarawak_Malaysia

Seyed Mohammad Bolouki, Hamid Reza Ramazi, Amin Beiranvand Pour, “A Remote Sensing-Based Application of Bayesian Networks for Epithermal Gold Potential Mapping in Ahar-Arasbaran Area, NW Iran,” Remote Sens, vol. 12, no. 1, p. 105, 2020, doi: https://doi.org/10.3390/rs12010105.

Mamadou Traore, Jonas Didero Takodjou Wambo, “Lithological and alteration mineral mapping for alluvial gold exploration in the south east of Birao area, Central African Republic using Landsat-8 Operational Land Imager (OLI) data,” J. African Earth Sci., vol. 170, p. 103933, 2020, [Online]. Available: https://www.sciencedirect.com/science/article/abs/pii/S1464343X20301849

F. D. Amr Abd El-Raouf, “Utilizing Remote Sensing and Satellite-Based Bouguer Gravity data to Predict Potential Sites of Hydrothermal Minerals and Gold Deposits in Central Saudi Arabia,” Minerals, vol. 13, no. 8, p. 1092, 2023, doi: https://doi.org/10.3390/min13081092.

Y. L. Chuntao Yin, “Mapping Ni-Cu-Platinum Group Element-Hosting, Small-Sized, Mafic-Ultramafic Rocks Using WorldView-3 Images and a Spatial-Spectral Transformer Deep Learning Method,” Econ. Geol., vol. 119, no. 3, pp. 665–680, 2024, [Online]. Available: https://pubs.geoscienceworld.org/segweb/economicgeology/article/119/3/665/634488/Mapping-Ni-Cu-Platinum-Group-Element-Hosting-Small

Amin Beiranvand Pour, Yongcheol Park, “Mapping Listvenite Occurrences in the Damage Zones of Northern Victoria Land, Antarctica Using ASTER Satellite Remote Sensing Data,” Remote Sens, vol. 11, no. 2, p. 1408, 2019, [Online]. Available: https://www.mdpi.com/2072-4292/11/12/1408

L. L. Nazir Ul Islam, “Mapping Alteration Zones for Detection of Economic Minerals using Integrated Tools in District Lower Dir, Northwest Khyber Pakhtunkhwa, Pakistan,” Int. J. Econ. Environ. Geol., vol. 14, no. 2, 2023, [Online]. Available: https://www.econ-environ-geol.org/index.php/ojs/article/view/135

J. C. Guanyun Zhou, “Three-dimensional mineral prospectivity mapping based on natural language processing and random forests: A case study of the Xiyu diamond deposit, China,” Ore Geol. Rev., vol. 169, p. 106082, 2024, [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0169136824002154

A. E. M. Reda Amer, “ASTER spectral analysis for alteration minerals associated with gold mineralization,” Ore Geol. Rev., vol. 75, pp. 239–251, 2016, [Online]. Available: https://www.sciencedirect.com/science/article/abs/pii/S0169136815302675

Z. M. Martin Flower, “Project targets mantle dynamics and Tethyan Hazard mitigation,” Eos Trans. Am. Geophys. Union, vol. 81, no. 49, 2000.

“Lithologic mapping in arid regions with Landsat Thematic Mapper data: Meatiq Dome, Egypt.” Accessed: Jan. 11, 2026.

R. B. R. Hébert, “The Indus–Yarlung Zangbo ophiolites from Nanga Parbat to Namche Barwa syntaxes, southern Tibet: First synthesis of petrology, geochemistry, and geochronology with incidences on geodynamic reconstructions of Neo-Tethys,” Gondwana Res., vol. 22, no. 2, pp. 377–397, 2012, [Online]. Available: https://www.sciencedirect.com/science/article/abs/pii/S1342937X11002838

Y. Ninomiya, “Mapping quartz, carbonate minerals, and mafic-ultramafic rocks using remotely sensed multispectral thermal infrared ASTER data,” Thermosense XXIV, vol. 4710, pp. 191–202, Mar. 2002, doi: 10.1117/12.459566.

K. M. Shuhab D. Khan, “Mapping of Muslim Bagh ophiolite complex (Pakistan) using new remote sensing, and field data,” J. Asian Earth Sci., vol. 30, no. 2, pp. 333–343, 20073, [Online]. Available: https://www.sciencedirect.com/science/article/abs/pii/S1367912006002768

M. E. Brian E. Tucker, “Issues in Urban Earthquake Risk,” Issues Urban Earthq. Risk, 1994, doi: 10.1007/978-94-015-8338-1.

“Petrology of the mantle rocks from the Muslim Bagh Ophiolite, Balochistan, Pakistan.” Accessed: Jan. 11, 2026. [Online]. Available: https://www.researchgate.net/publication/269628837_Petrology_of_the_mantle_rocks_from_the_Muslim_Bagh_Ophiolite_Balochistan_Pakistan

“Bilgrami, S.A. (1956) Mineralogy and Petrology of Muslimbagh Igneous Complex. Ph.D. Thesis, University of Manchester, UK. - References - Scientific Research Publishing.” Accessed: Jan. 11, 2026. [Online]. Available: https://www.scirp.org/reference/referencespapers?referenceid=2791485

S. A BILGRAMI, “Distribution of Cu, Ni, Co, V, and Cr in Rocks of the Hindubagh Igneous Complex, Zhob Valley, West Pakistan ,” GSA Bulletin. Accessed: Jan. 11, 2026. [Online]. Available: https://pubs.geoscienceworld.org/gsa/gsabulletin/article-abstract/72/12/1729/5279/Distribution-of-Cu-Ni-Co-V-and-Cr-in-Rocks-of-the?redirectedFrom=fulltext

Raymond H. Nagell, “Sulfur, fluorspar, magnesite, and aluminous chromite in Pakistan,” Open-File Rep., 1975, [Online]. Available: https://pubs.usgs.gov/publication/ofr75496

Asrarullah, “Chromite and mining in Pakistan,” Geogr. Rec, vol. 16, pp. 1–13, 1961.

“Mineralogical mapping in the Cuprite Mining District, Nevada.” Accessed: Jan. 11, 2026. [Online].Available:https://www.researchgate.net/publication/24323153_Mineralogical_mapping_in_the_Cuprite_Mining_District_Nevada

Fred A. Kruse, “Use of airborne imaging spectrometer data to map minerals associated with hydrothermally altered rocks in the northern grapevine mountains, Nevada, and California,” Remote Sens. Environ., vol. 24, no. 1, pp. 31–51, 1988, [Online]. Available: https://www.sciencedirect.com/science/article/abs/pii/0034425788900041

L. L. Waqar Ahmad, “Lithological Classification Using ZY1-02D Hyperspectral Data by Means of Machine Learning and Deep Learning Methods in the Kohat–Pothohar Plateau, Khyber Pakhtunkhwa, Pakistan,” Remote Sens., vol. 17, no. 8, p. 1356, 2025, doi: https://doi.org/10.3390/rs17081356.

X. S. Li Chen, “Mapping Alteration Minerals Using ZY-1 02D Hyperspectral Remote Sensing Data in Coalbed Methane Enrichment Areas,” Remote Sens., vol. 15, no. 14, p. 3590, 2023, [Online]. Available: https://www.mdpi.com/2072-4292/15/14/3590

T. C. Muhammad Ahsan Mahboob, “Predictive modelling of mineral prospectivity using satellite remote sensing and machine learning algorithms,” Remote Sens. Appl. Soc. Environ., vol. 36, p. 101316, 2024, [Online]. Available:

https://www.sciencedirect.com/science/article/pii/S2352938524001800

M. W. Nazir Jan, Nasru Minallah, Madiha Sher, “Advanced Mineral Deposit Mapping via Deep Learning and SVM Integration With Remote Sensing Imaging Data,” Eng. Reports, 2024, [Online]. Available: https://onlinelibrary.wiley.com/doi/full/10.1002/eng2.13031

Muhammad Anees, Muaaz Shoukat, “Integration of Multi and Hyperspectral Satellite Data for Identification of Potentially Mineralized Zones in the Southern Metamorphic Belt of Chitral (NW Pakistan),” J. Sp. Technol., vol. 22, no. 1, pp. 57–69, 2022,

E. G. Agustin Lobo, “Machine Learning for Mineral Identification and Ore Estimation from Hyperspectral Imagery in Tin–Tungsten Deposits: Simulation under Indoor Conditions,” Remote Sens, vol. 13, no. 16, p. 3258, 2021, [Online]. Available: https://www.mdpi.com/2072-4292/13/16/3258

H. S. K. Muhammad Jaleed Khan, “Modern Trends in Hyperspectral Image Analysis: A Review,” IEEE Access, 2018, [Online]. Available:

https://ieeexplore.ieee.org/document/8314827

R. N. Giri, R. R. Janghel, H. Govil, and G. Mishra, “A stacked ensemble learning-based framework for mineral mapping using AVIRIS-NG hyperspectral image,” J. Earth Syst. Sci. 2024 1332, vol. 133, no. 2, pp. 107-, May 2024, doi: 10.1007/S12040-024-02317-Z.

N. U. Islam et al., “Mineralogical mapping and lithological discrimination by using ASTER remote sensing data in the Chitral region, Khyber Pakhtunkhwa, Northern Pakistan,” Earth Sci. Informatics 2024 176, vol. 17, no. 6, pp. 6075–6094, Oct. 2024, doi: 10.1007/S12145-024-01483-4.

“Extracting lithologic information from ASTER multispectral thermal infrared data in the northeastern Pamirs.” Accessed: Jan. 11, 2026. [Online]. Available: https://www.researchgate.net/publication/281162879_Extracting_lithologic_information_from_ASTER_multispectral_thermal_infrared_data_in_the_northeastern_Pamirs

Enton Bedini, “The use of hyperspectral remote sensing for mineral exploration: a review,” J. Hyperspectral Remote Sens., vol. 7, no. 4, p. 189, 2017, [Online]. Available: https://www.researchgate.net/publication/363465665_The_use_of_hyperspectral_remote_sensing_for_mineral_exploration_a_review

“Small & Medium Enterprise Development Authority, Government of Pakistan Report on Killa Saifullah District Profile,” Gov. Pakistan, Islam., 2004, [Online]. Available: https://smeda.org/phocadownload/Balochistan/killa_saifullah_profile.pdf

D. D. P. 2021 Government of Baluchistan, “UNICEF and Planning & Development Department,” Kill. Saifullah, UNICEF, Quetta, 2021, [Online]. Available: https://www.unicef.org/pakistan/media/2966/file/Profiles of Underserved Areas of Quetta City of Balochistan, Pakistan.pdf

P. Molnar and P. Tapponnier, “Cenozoic tectonics of Asia: Effects of a continental collision,” Science (80-. )., vol. 189, no. 4201, pp. 419–426, 1975, doi:

1126/SCIENCE.189.4201.419.

“Vredenburg, E. (1901) A Geological Sketch of Balochistan Desert and Part of Eastern Persia. Geological Survey of India, Memoir, 31, 179-302. - References - Scientific Research Publishing.” Accessed: Jan. 11, 2026. [Online]. Available:

https://www.scirp.org/reference/referencespapers?referenceid=2791434

Dilek and Yildirim, “Penrose Conference on "Ophiolites and Oceanic Crust: New Insights from Field Studies and Ocean Drilling Program,” nsf, vol. 98, no. 9813451, p. 13451, 1998, Accessed: Jan. 11, 2026. [Online]. Available: https://ui.adsabs.harvard.edu/abs/1998nsf....9813451D/abstract

Z. A. E. M. Moores, D. H. Roeder, S. G. Abbas, “Geology and emplacement of the Muslim Bagh ophiolite complex,” A. Panayiotou (Ed.), Ophiolites Symp. Geol. Surv. Dep. Cyprus, pp. 424–429, 1980.

F. B. Khalid Mahmood, “40Ar/39Ar dating of the emplacement of the Muslim Bagh ophiolite, Pakistan,” Tectonophysics, vol. 220, no. 1–3, pp. 169–181, 1995, [Online]. Available: https://www.sciencedirect.com/science/article/abs/pii/0040195195000175

A. N. K. Benn, “Mantle—crust transition zone and origin of wehrlitic magmas: Evidence from the Oman ophiolite,” Tectonophysics, vol. 151, no. 1–4, pp. 75–85, 1988, [Online]. Available: https://www.sciencedirect.com/science/article/abs/pii/0040195188902417

F. Boudier and A. Nicolas, “Nature of the moho transition zone in the Oman ophiolite,” J. Petrol., vol. 36, no. 3, pp. 777–796, Jun. 1995, doi: 10.1093/PETROLOGY/36.3.777.

J. A. Richards and X. Jia, “Remote sensing digital image analysis: An introduction,” Remote Sens. Digit. Image Anal. An Introd., pp. 1–439, 2006, doi: 10.1007/3-540-29711-1.

“SWIR - ASTER User Advisory.” Accessed: Jan. 11, 2026. [Online]. Available: https://asterweb.jpl.nasa.gov/swir-alert.asp

J. R. Jensen and K. Lulla, “Introductory digital image processing: A remote sensing perspective,” Geocarto Int., vol. 2, no. 1, p. 65, 1987, doi: 10.1080/10106048709354084;CSUBTYPE:STRING:SPECIAL;PAGE:STRING:ARTICLE/CHAPTER.

A. Shaban, “Fundamentals of Satellite Remote Sensing,” Springer Water, pp. 1–14, 2022, doi: 10.1007/978-3-031-15549-9_1.

C. E. W. Conghe Song, “Classification and Change Detection Using Landsat TM Data: When and How to Correct Atmospheric Effects?,” Remote Sens. Environ., vol. 75, no. 2, pp. 230–244, 2001, [Online]. Available:

https://www.sciencedirect.com/science/article/abs/pii/S0034425700001693

T. Toutin, “Geometric processing of remote sensing images: Models, algorithms and methods,” Int. J. Remote Sens., vol. 25, no. 10, pp. 1893–1924, May 2004, doi: 10.1080/0143116031000101611;PAGE:STRING:ARTICLE/CHAPTER.

C. S. Fraser and H. B. Hanley, “Bias compensation in rational functions for Ikonos satellite imagery,” Photogramm. Eng. Remote Sensing, vol. 69, no. 1, pp. 53–57, Jan. 2003, doi: 10.14358/PERS.69.1.53.

B. L. M. Gyanesh Chander, “Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors,” Remote Sens. Environ., vol. 113, no. 5, pp. 893–903, 2009, [Online]. Available:

https://www.sciencedirect.com/science/article/abs/pii/S0034425709000169

N. Z. E. S. Eric F. Vermote, “Atmospheric correction of MODIS data in the visible to middle infrared: first results,” Remote Sens. Environ., vol. 83, no. 1–2, pp. 97–111, 2002, [Online]. Available:

https://www.sciencedirect.com/science/article/abs/pii/S0034425702000895

K. J. Thome, S. F. Biggar, and P. N. Slater, “Effects of assumed solar spectral irradiance on intercomparisons of Earth-observing sensors,” Sensors, Syst. Next-Generation Satell. V, vol. 4540, p. 260, Dec. 2001, doi: 10.1117/12.450668.

E. F. Vermote, D. Tanré, J. L. Deuzé, M. Herman, and J. J. Morcrette, “Second simulation of the satellite signal in the solar spectrum, 6s: an overview,” IEEE Trans. Geosci. Remote Sens., vol. 35, no. 3, pp. 675–686, 1997, doi: 10.1109/36.581987.

Y. J. Kaufman and C. Sendra, “Algorithm for automatic atmospheric corrections to visible and near-ir satellite imagery,” Int. J. Remote Sens., vol. 9, no. 8, pp. 1357–1381, 1988, doi: 10.1080/01431168808954942.

R. S. Fraser and Y. J. Kaufman, “The Relative Importance of Aerosol Scattering and Absorption in Remote Sensing,” IEEE Trans. Geosci. Remote Sens., vol. GE-23, no. 5, pp. 625–633, 1985, doi: 10.1109/TGRS.1985.289380.

R. Richter and D. Schläpfer, “Geo-atmospheric processing of airborne imaging spectrometry data. Part 2: Atmospheric/topographic correction,” Int. J. Remote Sens., vol. 23, no. 13, pp. 2631–2649, Jul. 2002, doi: 10.1080/01431160110115834.

L. S. Bernstein et al., “A new method for atmospheric correction and aerosol optical property retrieval for VIS-SWIR multi- and hyperspectral imaging sensors: QUAC (QUick Atmospheric Correction),” Int. Geosci. Remote Sens. Symp., vol. 5, pp. 3549–3552, 2005, doi: 10.1109/IGARSS.2005.1526613.

L. S. Bernstein, “Quick atmospheric correction code: algorithm description and recent upgrades,” Opt. Eng., vol. 51, no. 11, p. 111719, Jul. 2012, doi: 10.1117/1.OE.51.11.111719.

S. M. Adler-Golden et al., “Atmospheric correction for shortwave spectral imagery based on MODTRAN4,” Imaging Spectrom. V, vol. 3753, pp. 61–69, Oct. 1999, doi: 10.1117/12.366315.

M. W. Matthew et al., “Atmospheric correction of spectral imagery: Evaluation of the FLAASH algorithm with AVIRIS data,” Proc. - Appl. Imag. Pattern Recognit. Work., vol. 2002-January, pp. 157–163, 2002, doi: 10.1109/AIPR.2002.1182270.

M. L. E. Robert O. Green, “Imaging Spectroscopy and the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS),” Remote Sens. Environ., vol. 65, no. 3, pp. 227–248, 1998, [Online]. Available: https://www.sciencedirect.com/science/article/abs/pii/S0034425798000649

R. N. Clark, T. V. V. King, M. Klejwa, G. A. Swayze, and N. Vergo, “High spectral resolution reflectance spectroscopy of minerals,” J. Geophys. Res., vol. 95, no. B8, pp. 12653–12680, Aug. 1990, doi: 10.1029/JB095IB08P12653;WGROUP:STRING:PUBLICATION.

F. A. Kruse, A. B. Lefkoff, “The spectral image processing system (SIPS)—interactive visualization and analysis of imaging spectrometer data,” Remote Sens. Environ., vol. 44, no. 2–3, pp. 145–163, 1993, [Online]. Available: https://www.sciencedirect.com/science/article/abs/pii/003442579390013N

F. A. K. Joseph W. Boardman, “Mapping target signatures via partial unmixing of AVIRIS data,” Summ. Fifth Annu. JPL Airborne Earth Sci. Work. Vol. 1 AVIRIS Work., 1995, [Online]. Available: https://ntrs.nasa.gov/citations/19950027316

J. M. P. Nascimento and J. M. B. Dias, “Vertex component analysis: A fast algorithm to unmix hyperspectral data,” IEEE Trans. Geosci. Remote Sens., vol. 43, no. 4, pp. 898–910, Apr. 2005, doi: 10.1109/TGRS.2005.844293.

M. E. Winter, “N-FINDR: an algorithm for fast autonomous spectral end-member determination in hyperspectral data,” https://doi.org/10.1117/12.366289, vol. 3753, pp. 266–275, Oct. 1999, doi: 10.1117/12.366289.

A. Plaza, P. Martínez, R. Pérez, and J. Plaza, “A quantitative and comparative analysis of endmember extraction algorithms from hyperspectral data,” IEEE Trans. Geosci. Remote Sens., vol. 42, no. 3, pp. 650–663, Mar. 2004, doi: 10.1109/TGRS.2003.820314.

A. A. Green, M. Berman, P. Switzer, and M. D. Craig, “A Transformation for Ordering Multispectral Data in Terms of Image Quality with Implications for Noise Removal,” IEEE Trans. Geosci. Remote Sens., vol. 26, no. 1, pp. 65–74, 1988, doi: 10.1109/36.3001.

Joseph W. Boardman, “Automating spectral unmixing of AVIRIS data using convex geometry concepts,” JPL, Summ. 4th Annu. JPL Airborne Geosci. Work. Vol. 1 AVIRIS Work., 1993, [Online]. Available: https://ntrs.nasa.gov/citations/19950017428

G. A. Licciardi and F. Del Frate, “Pixel unmixing in hyperspectral data by means of neural networks,” IEEE Trans. Geosci. Remote Sens., vol. 49, no. 11 PART 1, pp. 4163–4172, Nov. 2011, doi: 10.1109/TGRS.2011.2160950.

Boardman J W, “Automated spectral analysis: a geological example using AVIRIS data, north Grapevine Mountains, Nevada,” Proc. 10th Themat. Conf. Geol. Remote Sens., 1994, [Online]. Available: https://jglobal.jst.go.jp/en/detail?JGLOBAL_ID=200902187647539097

C. I. Chang and A. Plaza, “A fast iterative algorithm for implementation of pixel purity index,” IEEE Geosci. Remote Sens. Lett., vol. 3, no. 1, pp. 63–67, Jan. 2006, doi: 10.1109/LGRS.2005.856701.

C. I. Chang, “Hyperspectral Data Processing: Algorithm Design and Analysis,” Hyperspectral Data Process. Algorithm Des. Anal., Mar. 2013, doi: 10.1002/9781118269787.

J. B. Adams, M. O. Smith, and P. E. Johnson, “Spectral mixture modeling: A new analysis of rock and soil types at the Viking Lander 1 Site,” J. Geophys. Res. Solid Earth, vol. 91, no. B8, pp. 8098–8112, Jul. 1986, doi: 10.1029/JB091IB08P08098.

G. R. Hunt, “Spectral signatures of particulate minerals in the visible and near infrared,” Geophysics, vol. 42, no. 3, pp. 501–513, Apr. 1977, doi: 10.1190/1.1440721.

R. N. Clark, “Spectroscopy of rocks and minerals and principles of spectroscopy,” 1999.

R. N. Clark and T. L. Roush, “Reflectance spectroscopy: quantitative analysis techniques for remote sensing applications.,” J. Geophys. Res., vol. 89, no. B7, pp. 6329–6340, Jul. 1984, doi: 10.1029/JB089IB07P06329;CTYPE:STRING:JOURNAL.

Freek van der Meer, “Analysis of spectral absorption features in hyperspectral imagery,” Int. J. Appl. Earth Obs. Geoinf., vol. 5, no. 1, pp. 55–68, 2004, [Online]. Available: https://www.sciencedirect.com/science/article/abs/pii/S0303243403000382

Hugh R. Rollinson, “Using Geochemical Data: Evaluation, Presentation, Interpretation - 1st,” Routledge. Accessed: Jan. 11, 2026. [Online]. Available: https://www.routledge.com/Using-Geochemical-Data-Evaluation-Presentation-Interpretation/Rollinson/p/book/9780582067011

A. Streckeisen, “To each plutonic rock its proper name,” Earth-Science Rev., vol. 12, no. 1, pp. 1–33, 1976, [Online]. Available: https://www.sciencedirect.com/science/article/abs/pii/0012825276900520

Fred A. Kruse, “Mapping surface mineralogy using imaging spectrometry,” Geomorphology, vol. 137, no. 1, pp. 41–56, 2012, [Online]. Available: https://www.sciencedirect.com/science/article/abs/pii/S0169555X11001516

Floyd F Sabins, “Remote sensing for mineral exploration,” Ore Geol. Rev., vol. 14, no. 3–4, pp. 157–183, 1999, [Online]. Available: https://www.sciencedirect.com/science/article/abs/pii/S0169136899000074

K. E. L. Roger N. Clark, Gregg A. Swayze, “Imaging spectroscopy: Earth and planetary remote sensing with the USGS Tetracorder and expert systems,” J. Geophys. Res. Planets, 2003, [Online]. Available: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2002JE001847

A. B. Pour and M. Hashim, “The application of ASTER remote sensing data to porphyry copper and epithermal gold deposits,” Ore Geol. Rev., vol. 44, pp. 1–9, Feb. 2012, doi: 10.1016/J.OREGEOREV.2011.09.009.

H. M. A. van der W. Freek D. van der Meer, “Multi- and hyperspectral geologic remote sensing: A review,” Int. J. Appl. Earth Obs. Geoinf., vol. 14, no. 1, pp. 112–128, 2012, [Online].Available:https://www.sciencedirect.com/science/article/abs/pii/S0303243411001103

S. L. Moritz Kirsch, “Integration of Terrestrial and Drone-Borne Hyperspectral and Photogrammetric Sensing Methods for Exploration Mapping and Mining Monitoring,” Remote Sens, vol. 10, no. 9, p. 1366, 2018, [Online]. Available: https://www.mdpi.com/2072-4292/10/9/1366

Downloads

Published

2025-12-22

How to Cite

Abdul Mohsin, Javed Iqbal, Junaid Aziz Khan, Abdul Jabbar Khan, & Krystyna Michalowska. (2025). Spectral Profiles to Minerals Identification: An Integrated Hyperspectral vs Multispectral Minerals Exploration of the Ophiolitic Belt of Qilla Saifullah District, Baluchistan. International Journal of Innovations in Science & Technology, 7(4), 3227–3261. Retrieved from https://journal.50sea.com/index.php/IJIST/article/view/1676