Review on Performance Analysis of Three Control Techniques for Buck Converter feeding a Resistive Load

Authors

  • Ghulam Mustafa Air University, Islamabad
  • Dr. Fiaz Ahmad Air University, Islamabad

Keywords:

Buck converter, PID control, Fuzzy logic control (FLC), Sliding mode control (SMC)

Abstract

     

 

In power systems, DC/DC converters are used to reduce or improve the dc voltage level. A dc/dc converter's major difficulty is controlling the output dc voltage closer to the desired set-point voltage at the load and input voltage fluctuation. Designers aim for better efficiency, reduced harmonics, and higher power while keeping converter size and power under safe limits. Several control techniques are used in dc/dc converters to overcome the problems mentioned above. This paper compares the transient performance of three control techniques, namely proportional-integral-derivative (PID) control, fuzzy logic control (FLC), and sliding mode control (SMC) methods, after a brief introduction of these techniques. Secondly, the three techniques have performed simulation results of a buck converter feeding a resistive load. Comparative analyses are presented for various conditions such as input voltage and load variation tests. It is observed that SMC outperforms the other two methods for both simulation scenarios.

Author Biography

Dr. Fiaz Ahmad, Air University, Islamabad

Dr. Fiaz Ahmad is working as Associate Professor in the academia. He has served as laboratory engineer, laboratory coordinator, lecturer, assistant professor and now serving as associate professor in electrical engineering. He is a multi skilled academician with diverse skills such as Power system state estimation and control, Power Converters design and control, Electronics circuits design and analysis, programing languages such as; C++, Assembly languages, Matlab and Simulink, and other skills like LaTeX, Beamer. office tools, Leadership, and Project Management. He is a strong education professional with a Doctor of Philosophy (PhD) in Mechatronics Engineering from Sabanci University Turkey.

References

S. Chander, P. Agarwal, and I. Gupta, "Design, modeling and simulation of DC-DC converter," 2010 9th Int. Power Energy Conf. IPEC 2010, pp. 456–461, 2010, doi: 10.1109/IPECON.2010.5697039.

R. Wang, H. Chen, T. Lei, and Y. Shi, "Research on DC-DC converter with high voltage and high power," 2014 IEEE Int. Conf. Inf. Autom. ICIA 2014, pp. 323–326, Oct. 2014, doi: 10.1109/ICINFA.2014.6932675.

A. Lindiya, S. Palani, and M. Iyyappan, "Performance Comparison of Various Controllers for DC-DC Synchronous Buck Converter," Procedia Eng., vol. 38, pp. 2679–2693, Jan. 2012, doi: 10.1016/J.PROENG.2012.06.315.

S. Dahale, A. Das, N. M. Pindoriya, and S. Rajendran, "An overview of DC-DC converter topologies and controls in DC microgrid," 2017 7th Int. Conf. Power Syst. ICPS 2017, pp. 410–415, Jun. 2018, doi: 10.1109/ICPES.2017.8387329.

Mirza Fuad Adnan, Mohammad Abdul Moin Oninda, Mirza Muntasir Nishat, and Nafiul Islam, "Design and Simulation of a DC - DC Boost Converter with PID Controller for Enhanced Performance," Int. J. Eng. Res., vol. V6, no. 09, 2017, doi: 10.17577/ijertv6is090029.

S. W. Seo and H. H. Choi, "Digital implementation of fractional order PID-Type controller for boost DC-DC converter," IEEE Access, vol. 7, pp. 142652–142662, 2019, doi: 10.1109/ACCESS.2019.2945065.

S. Satpathy, S. Ghosh, S. Das, S. Debbarma, and B. K. Bhattacharyya, "Study of Dynamic response of DC-DC buck converter Based On PID controller," Proc. ICCIIoT 2018, no. March, pp. 806–810, 2019.

H. A. H. Ammar Falah Algamluoli, "Voltage Controller of DC-DC Buck Boost Converter with Proposed PID Controller," Int. J. Adv. Res. Comput. Eng. Technol., vol. 9, no. 1, pp. 1–4, 2020.

T. Kobaku, R. Jeyasenthil, S. Sahoo, and T. Dragicevic, "Experimental Verification of Robust PID Controller under Feedforward Framework for a Nonminimum Phase DC-DC Boost Converter," IEEE J. Emerg. Sel. Top. Power Electron., vol. 9, no. 3, pp. 3373–3383, Jun. 2021, doi: 10.1109/JESTPE.2020.2999649.

S. P. Sunddararaj, S. S. Rangarajan, U. Subramaniam, E. R. Collins, and T. Senjyu, "Performance of p/pi/pid based controller in dc-dc converter for pv applications and smart grid technology," Proc. 7th Int. Conf. Electr. Energy Syst. ICEES 2021, pp. 171–176, Feb. 2021, doi: 10.1109/ICEES51510.2021.9383671.

M. K. Al-Nussairi, R. Bayindir, and E. Hossain, "Fuzzy logic controller for Dc-Dc buck converter with constant power load," pp. 1175–1179, Dec. 2017, doi: 10.1109/ICRERA.2017.8191239.

N. F. Nik Ismail, I. Musirin, R. Baharom, and D. Johari, "Fuzzy logic controller on DC/DC boost converter," PECon2010 - 2010 IEEE Int. Conf. Power Energy, pp. 661–666, 2010, doi: 10.1109/PECON.2010.5697663.

F. Logic, "Properties & Relationships F UZZY L OGIC & F UZZY S YSTEMS F UZZY L OGIC & F UZZY S YSTEMS," vol. 2, no. 1, pp. 1–44, 2011.

K. F. Hussein, I. Abdel-Qader, and M. K. Hussain, "Hybrid fuzzy PID controller for buck-boost converter in solar energy-battery systems," IEEE Int. Conf. Electro Inf. Technol., vol. 2015-June, pp. 70–75, Jun. 2015, doi: 10.1109/EIT.2015.7293323.

S. Maity et al., "Performance analysis of fuzzy logic controlled DC-DC converters," Proc. 2019 IEEE Int. Conf. Commun. Signal Process. ICCSP 2019, pp. 165–171, Apr. 2019, doi: 10.1109/ICCSP.2019.8698113.

K. Swathy, S. Jantre, Y. Jadhav, S. M. Labde, and P. Kadam, "Design and Hardware Implementation of Closed Loop Buck Converter Using Fuzzy Logic Controller," Proc. 2nd Int. Conf. Electron. Commun. Aerosp. Technol. ICECA 2018, pp. 175–180, Sep. 2018, doi: 10.1109/ICECA.2018.8474570.

T. U. Hassan et al., "A Novel Algorithm for MPPT of an Isolated PV System Using Push Pull Converter with Fuzzy Logic Controller," Energies 2020, Vol. 13, Page 4007, vol. 13, no. 15, p. 4007, Aug. 2020, doi: 10.3390/EN13154007.

N. D. Bhat, D. B. Kanse, S. D. Patil, and S. D. Pawar, "DC/DC Buck Converter Using Fuzzy Logic Controller," pp. 182–187, Jul. 2020, doi: 10.1109/ICCES48766.2020.9138084.

A. Bharathi Sankar Ammaiyappan and R. Seyezhai, "Implementation of fuzzy logic control based mppt for photovoltaic system with silicon carbide (Sic) boost dc-dc converter," WSEAS Trans. Syst. Control, vol. 16, pp. 198–215, 2021, doi: 10.37394/23203.2021.16.17.

T. Sutikno, A. C. Subrata, and A. Elkhateb, "Evaluation of Fuzzy Membership Function Effects for Maximum Power Point Tracking Technique of Photovoltaic System," IEEE Access, vol. 9, pp. 109157–109165, 2021, doi: 10.1109/ACCESS.2021.3102050.

H. Al-Baidhani, M. K. Kazimierczuk, and A. Reatti, "Nonlinear Modeling and Voltage-Mode Control of DC-DC Boost Converter for CCM," Proc. - IEEE Int. Symp. Circuits Syst., vol. 2018-May, Apr. 2018, doi: 10.1109/ISCAS.2018.8351078.

A. Ugur and M. Yilmaz, "Digital hybrid current mode control for DC–DC converters," IET Power Electron., vol. 12, no. 4, pp. 891–898, Apr. 2019, doi: 10.1049/IET-PEL.2018.6035.

M. S. M. Sarif, T. X. Pei, and A. Z. Annuar, "Modeling, design and control of bidirectional DC-DC converter using state-space average model," ISCAIE 2018 - 2018 IEEE Symp. Comput. Appl. Ind. Electron., pp. 416–421, Jul. 2018, doi: 10.1109/ISCAIE.2018.8405509.

Z. Karami, Q. Shafiee, S. Sahoo, M. Yaribeygi, H. Bevrani, and T. Dragicevic, "Hybrid Model Predictive Control of DC-DC Boost Converters with Constant Power Load," IEEE Trans. Energy Convers., vol. 36, no. 2, pp. 1347–1356, Jun. 2021, doi: 10.1109/TEC.2020.3047754.

B. A. Martinez-Treviño, A. El Aroudi, E. Vidal-Idiarte, A. Cid-Pastor, and L. Martinez-Salamero, "Sliding-mode control of a boost converter under constant power loading conditions," IET Power Electron., vol. 12, no. 3, pp. 521–529, Mar. 2019, doi: 10.1049/IET-PEL.2018.5098.

Y. Zhao, W. Qiao, and D. Ha, "A sliding-mode duty-ratio controller for DC/DC buck converters with constant power loads," IEEE Trans. Ind. Appl., vol. 50, no. 2, pp. 1448–1458, 2014, doi: 10.1109/TIA.2013.2273751.

S. H. Chincholkar, W. Jiang, and C. Y. Chan, "An Improved PWM-Based Sliding-Mode Controller for a DC-DC Cascade Boost Converter," IEEE Trans. Circuits Syst. II Express Briefs, vol. 65, no. 11, pp. 1639–1643, Nov. 2018, doi: 10.1109/TCSII.2017.2754292.

N. Kiran, "Sliding Mode Control of Buck Converter," Bull. Electr. Eng. Informatics, vol. 3, no. 1, 2014, doi: 10.12928/eei.v3i1.183.

H. Guldemir, "Study of Sliding Mode Control of DC-DC Buck Converter," Energy Power Eng., vol. 03, no. 04, pp. 401–406, 2011, doi: 10.4236/epe.2011.34051.

S. Ding, W. X. Zheng, J. Sun, and J. Wang, "Second-order sliding-mode controller design and its implementation for buck converters," IEEE Trans. Ind. Informatics, vol. 14, no. 5, pp. 1990–2000, May 2018, doi: 10.1109/TII.2017.2758263.

S. Huerta-Moro, J. I. Trujillo-Flores, J. C. Villegas-Hernandez, A. M. Rodriguez-Domingez, J. F. Guerrero-Castellanos, and V. R. Gonzalez-Diaz, “A simple sliding-mode control circuit for buck DC-DC converters,” 2019 28th Int. Fall Meet. Commun. Comput. ROC C 2019 - Proc., pp. 24–27, Mar. 2019, doi: 10.1109/ROCC.2019.8873540.

A. Alzawaideh and I. Boiko, "Analysis of a Sliding Mode DC-DC Boost Converter through LPRS of a Nonlinear Plant," IEEE Trans. Power Electron., vol. 35, no. 11, pp. 12321–12331, Nov. 2020, doi: 10.1109/TPEL.2020.2983596.

Z. Wang, S. Li, and Q. Li, "Discrete-Time Fast Terminal Sliding Mode Control Design for DC-DC Buck Converters with Mismatched Disturbances," IEEE Trans. Ind. Informatics, vol. 16, no. 2, pp. 1204–1213, Feb. 2020, doi: 10.1109/TII.2019.2937878.

X. Lin, J. Liu, F. Liu, Z. Liu, Y. Gao, and G. Sun, "Fractional-order sliding mode approach of buck converters with mismatched disturbances," IEEE Trans. Circuits Syst. I Regul. Pap., vol. 68, no. 9, pp. 3890–3900, Sep. 2021, doi: 10.1109/TCSI.2021.3092138.

H. Al-Baidhani, T. Salvatierra, R. Ordonez, and M. K. Kazimierczuk, "Simplified Nonlinear Voltage-Mode Control of PWM DC-DC Buck Converter," IEEE Trans. Energy Convers., vol. 36, no. 1, pp. 431–440, Mar. 2021, doi: 10.1109/TEC.2020.3007739.

Downloads

Published

2022-06-30

How to Cite

Mustafa, G., & Ahmad, F. . (2022). Review on Performance Analysis of Three Control Techniques for Buck Converter feeding a Resistive Load. International Journal of Innovations in Science & Technology, 4(5), 39–51. Retrieved from https://journal.50sea.com/index.php/IJIST/article/view/333