Assessment of climate change projections in the Chenab River Basin, Western Himalaya

Authors

  • Jamal Hassan Ougahi Government Associate College, Salarwala Faisalabad, Pakistan

Keywords:

GCM, Climate change, Temperature, Precipitation, Chenab River Basin

Abstract

General circulation models (GCMs) are vital to project potential changes in future
climate under different emissions scenarios. Raw GCM output is not applicable at
regional scale due to biases relative to observational data and coarse spatial scale for
future climate predictions. Here, statistical downscaling method was employed to generate
daily maximum temperature (Tmax), minimum temperature (Tmin) and precipitation of
coarse spatial resolution of GCM (0.5 degree) which fall within the boundary of CRB. In this
study, the fifth generation ECMWF atmospheric reanalysis (ERA5) data was used as observed
data to downscale and bias-correct GFDL-ESM2M data under RCP4.5 and RCP8.5 emission
scenarios for the near future (2020-2050), mid-century (2051-2080) and end of century (2081-
2100) in the Chenab River Basin (CRB). The refined output from the GCM was further
analyzed to depict climate changes in the CRB. It was found that a consistent increase in
maximum temperature (Tmax) and minimum temperature (Tmin) was recorded under RCP4.5
and RCP8.5 in the future scenarios. In the CRB, the magnitude of increase in predicted Tmin
was higher than Tmax. However, precipitation showed an increasing trend in near future while
decreasing trend in the mid-century and end of century under RCP4.5.

References

Lawrimore, J. H., Menne, M. J., Gleason, B. E., Williams, C. N., Wuertz, D. B., Vose,

R. S., & Rennie, J. (2011). An overview of the Global Historical Climatology Network

monthly mean temperature data set, version 3. Journal of Geophysical Research Atmospheres,

(19), 1–18. https://doi.org/10.1029/2011JD016187

Rohde, R., Muller, R. A., Jacobsen, R., Muller, E., Perimutter, S., Rosenfeld, A.,

Wurtele, J., Groom, D., & Wickham, C. (2013). A New Estimate of the Average Earth

Surface Land Temperature Spanning 1753 to 2011. Geoinformatics & Geostatistics: An

Overview, 1 (1).

Hartmann, H., & Andresky, L. (2013). Flooding in the Indus River basin — A

spatiotemporal analysis of precipitation records. Global and Planetary Change, 107, 25–35.

https://doi.org/ 10.1016/j.gloplacha.2013.04.002

Folland, C. K., Boucher, O., Colman, A., & Parker, D. E. (2018). Causes of irregularities

in trends of global mean surface temperature since the late 19th century. Science Advances,

(6). https://doi.org/10.1126/sciadv.aao5297

Fyfe, J. C., Meehl, G. A., England, M. H., Mann, M. E., Santer, B. D., Flato, G. M.,

Hawkins, E., Gillett, N. P., Xie, S.-p., Kosaka, Y., & Swart, N. C. (2016). Making sense of

the early- 2000s warming slowdown. Nature Climate Change, 6 (3), 224–228. https:

//doi.org/10.1038/nclimate2938

Medhaug, I., Stolpe, M. B., Fischer, E. M., & Knutti, R. (2017). Reconciling

controversies about the ‘ global warming hiatus ’. Nature, 545, 41–47.

https://doi.org/10.1038/nature22315

Su, B., Huang, J., Gemmer, M., Jian, D., Tao, H., Jiang, T., & Zhao, C. (2016). Statistical

downscaling of CMIP5 multi-model ensemble for projected changes of climate in the

Indus River Basin. Atmospheric Research, 178-179, 138–149.

https://doi.org/10.1016/j.atmosres.2016.03.023

IPCC. (2018). Global Warming of 1.5°C. An IPCC Special Report on the impacts of global

warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the

context of strengthening the global response to the threat of climate change, Cambridge University

Press, Cambridge, United Kingdom; New York, NY, USA, Cambridge University Press,

Cambridge, United Kingdom; New York, NY, USA,

IPCC. (2013). Climate Change 2013 The Physical Science Basis Working Group I Contribution

to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (p. 1535 pp).

Cambridge University Press, Cambridge, United Kingdom; New York, NY, USA,

https://doi.org/10.1017/CBO9781107415324.Summary

Krishnan, R., Shrestha, A. B., Ren, G., Rajbhandari, R., Saeed, S., Sanjay, J., Syed, A.,

Vellore, R., Xu, Y., You, Q., & Ren, Y. (2019). Unravelling Climate Change in the Hindu

Kush Himalaya: Rapid Warming in the Mountains and Increasing Extremes. In The hindu

kush himalaya assessment (pp. 57–97). Springer International Publishing.

https://doi.org/10.1007/978-3-319-92288-1

Wang, Y., Wu, N., Kunze, C., Long, R., & Perlik, M. (2019). Drivers of Change to

Mountain Sustainability in the Hindu Kush Himalaya. In The hindu kush himalaya assessment mountains, climate change, sustainability and people (pp. 17–56). Springer International

Publishing. https://doi.org/10.1007/978-3-319-92288-1

Sheikh, M. M., Manzoor, N., Ashraf, J., Adnan, M., Collins, D., Hameed, S., Manton,

M. J., Ahmed, A. U., Baidya, S. K., Borgaonkar, H. P., Islam, N., Jayasinghearachchi, D.,

Kothawale, D. R., Premalal, K. H. M. S., Revadekar, J. V., & Shrestha, M. L. (2015). Trends

in extreme daily rainfall and temperature indices over South Asia. International Journal of

Climatology, 35 (7), 1625–1637. https://doi.org/10.1002/joc.4081

Fowler, H. J., & Archer, D. R. (2006). Conflicting signals of climatic change in the

upper Indus Basin. Journal of Climate, 19 (17), 4276–4293.

https://doi.org/10.1175/JCLI3860.1

Khattak, M. S., Babel, M. S., & Sharif, M. (2011). Hydro-meteorological trends in the

upper Indus River basin in Pakistan. Climate Research, 46 (2), 103–119.

https://doi.org/10.3354/cr00957

Chen, P.-c., Wang, Y.-h., You, G. J.-y., & Wei, C.-c. (2017). Comparison of methods

for non-stationary hydrologic frequency analysis : Case study using annual maximum daily

precipitation in Taiwan. Journal of Hydrology, 545, 197–211.

https://doi.org/10.1016/j.jhydrol.2016.12.001

Wu, F., Zhan, J., Su, H., Yan, H., & Ma, E. (2015). Scenario-Based Impact Assessment

of Land Use/Cover and Climate Changes on Watershed Hydrology in Heihe River Basin

of Northwest China. Advances in Meteorology, 2015. https://doi.org/10.1155/2015/410198

Gajbhiye, S., Meshram, C., Singh, S. K., & Srivastava, P. K. (2016). Precipitation trend

analysis of Sindh River basin , India , from 102-year record ( 1901 – 2002 ). Atmospheric

Science Letters, 77 (November 2015), 71–77. https://doi.org/10.1002/asl.602 [18] Ahmad,

W., Fatima, A., Awan, U. K., & Anwar, A. (2014). Analysis of long term meteorological

trends in the middle and lower Indus Basin of Pakistan-A non-parametric statistical

approach. Global and Planetary Change, 122, 282–291.

https://doi.org/10.1016/j.gloplacha.2014.09.007

Lutz, A. F., Immerzeel, W. W., Kraaijenbrink, P. D. A., Shrestha, A. B., & Bierkens,

M. F.P. (2016). Climate Change Impacts on the Upper Indus Hydrology : Sources , Shifts

and Extremes. PLoS ONE, 11 (11), 33. https://doi.org/10.1371/journal.pone.0165630

Kamworapan, S., & Surussavadee, C. (2019). Evaluation of CMIP5 global climate

models for simulating climatological temperature and precipitation for southeast Asia.

Advances in Meteorology, 2019. https://doi.org/10.1155/2019/1067365

Hawkins, B. Y. E. D., & Sutton, R. (2009). UNCERTAINTY IN REGIONAL.

American Meteorological Society, August, 1095–1108.

https://doi.org/10.1175/2009BAMS2607.1

Zheng, H., Chiew, F. H. S., Charles, S., & Podger, G. (2018). Future climate and

runoff projections across South Asia from CMIP5 global climate models and hydrological

modelling. Journal of Hydrology: Regional Studies, 18 (July), 92–109.

https://doi.org/10.1016/j.ejrh.2018.06.004

Knutti, R., & Sedlácek, J. (2013). Robustness and uncertainties in the new CMIP5

climate model projections. Nature Climate Change, 3 (4), 369–373.

https://doi.org/10.1038/nclimate1716

Milly, P. C. D., Betancourt, J., Falkenmark, M., Hirsch, R. M., Zbigniew, W.,

Lettenmaier,D. P., & Stouffer, R. J. (2008). Stationarity Is Dead : Whither Water

Management ? Climate Change, 319 (573-574).

Lutz, A. F., Immerzeel, W. W., Shrestha, A. B., & Bierkens, M. F. P. (2014). Consistent

increase in High Asia’s runoff due to increasing glacier melt and precipitation. Nature

Climate Change, 4 (7), 587–592. https://doi.org/10.1038/nclimate2237 [26] Grover, S., Tayal, S., Beldring, S. & Li, H. 2020 Modeling hydrological processes in

ungauged snow-fed catchment of western himalaya. Water Resources 47 (6), 987–995.

https://doi.org/10.1134/S0097807820060147.

Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Nicolas, J., Peubey,

C., Radu, R., Bonavita, M., Dee, D., Dragani, R., Flemming, J., Forbes, R., Geer, A.,

Hogan, R. J., Janisková, H. M., Keeley, S., Laloyaux, P., Cristina, P. L. & Thépaut, J. 2020

The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146,

–2049. https://doi.org/10.1002/qj.3803.

Albergel, C., Dutra, E., Munier, S., Calvet, J. & Munoz-sabater, J. 2018 ERA-5 and

ERA-Interim driven ISBA land surface model simulations : which one performs better ?

Hydrology and Earth System Sciences 22, 3515–3532

Ougahi JH, Mahmood SA (2022) Evaluation of satellite-based and reanalysis

precipitation datasets by hydrologic simulation in the Chenab river basin. J Wat Clim

Change. https:// doi. org/ 10. 2166/wcc20 22410

Ougahi JH, Cutler MEJ, Cook SJ (2021) Modelling climate change impact on water

resources of the Upper Indus Basin. J Wat Climat Change 13(2):482–504. https:// doi.

org/ 10. 2166/ wcc20 21233

Rajbhandari, R., Shrestha, A. B., Kulkarni, A., Patwardhan, S. K., & Bajracharya, S.

R.(2014). Projected changes in climate over the Indus river basin using a high resolution

regional climate model (PRECIS). Climate Dynamics, 44 (1-2), 339–357.

https://doi.org/10.1007/s0 0382-014-2183-8

Holman, I. P., Tascone, D., & Hess, T. M. (2009). A comparison of stochastic and

deterministic downscaling methods for modelling potential groundwater recharge under

climate change in East Anglia , UK : implications for groundwater resource management.

Hydrology Journal, 17, 1629–1641. https://doi.org/10.1007/s10040-009-0457-8

Ashfaq, A., M. Ashfaq, G. Rasul, S. A. Wajid, T. Khaliq, F. Rasul, U. Saeed, M. H. U.

Rahman, J. Hussain, I. A. Baig, S. A. A. Naqvi, S. A. A. Bokhari, S. Ahmad, W. Naseem,

G. Hoogenboom, 2015: Impact of climate change on the rice-wheat cropping system of

Pakistan. In: Handbook of Climate Change and Agro-ecosystems, Vol. 3 (editors) Hillel

D and Rosenzweig C. Imperial College Press and the American Society of Agronomy

−258.

Hassan, M., D. Penfei, W. Iqbal, W. Can, F. Wei, W. Ba, 2014: Temperature and

Precipitation Climatology Assessment over South Asia using the Regional Climate Model

(RegCM4.3): An Evaluation of the Model Performance. Journal of Earth Sciences and

Climatic Change 5: 214. DOI: 10.4172/2157–7617.1000214.

Mamgain, A., M. Laura, C. Erika, G. Filippo, and K. D. Sushil, 2013: Sensitivity of

RegCM4.3 two convection schemes on Indian summer monsoon for the South Asia

CORDEX domain. Geophysical Research Abstracts 15: 4812.

Sanderson, M.; Arbuthnott, K.; Kovats, S.; Hajat, S.; Falloon, P. The use of climate

information to estimate future mortality from high ambient temperature: A systematic

literature review. PLoS ONE 2017, 12, e0180369.

Vaghefi, S. A., Abbaspour, N., Kamali, B. & Abbaspour, K. C. 2017 A toolkit for

climate change analysis and pattern recognition for extreme weather conditions – case

study: California-Baja California Peninsula. Environmental Modelling and Software 96,

–198. doi:10.1016/j.envsoft.2017.06.033.

Akhtar, M., Ahmad, N. & Booij, M. J. 2009 Use of regional climate model simulations

as input for hydrological models for the Hindukush-Karakorum-Himalaya region.

Hydrology and Earth System Sciences 13 (7), 1075–1089. https://doi.org/10.5194/hess-

-1075-2009.

Palazzi, E., Hardenberg, J. Von & Provenzale, A. 2015 Precipitation in the

Karakoram-Himalaya: A CMIP5 view. Climate Dynamics 45,21–45.

https://doi.org/10.1007/s00382-014-2341-z.

Knutti, R. & Sedláček, J. 2013 Robustness and uncertainties in the new CMIP5 climate

model projections. Nature Climate Change 3 (4),369–373.

https://doi.org/10.1038/nclimate1716.

Grover, S., Tayal, S., Beldring, S. & Li, H. 2020 Modeling hydrological processes in

ungauged snow-fed catchment of western himalaya. Water Resources 47 (6), 987–995.

https://doi.org/10.1134/S0097807820060147.

Singh, P.; Ramasastri, K.S.; Kumar, N. Topographical Influence on precipitation

distribution in different ranges of Western Himalayas. Nord. Hydrol. 1995, 26, 259–284.

Sharma, A. & Thakur, N. S. 2017 Energy situation, current status and resource

potential of run of the river (RoR) large hydropower projects in Jammu and Kashmir:

India. Renewable and Sustainable Energy Reviews 78, 233–251.

http://dx.doi.org/10.1016/j.rser.2017.04.087.

Jasrotia, A. S., Baru, D., Kour, R., Ahmad, S. & Kour, K. 2021. Hydrological modeling

to simulate stream flow under changing climate conditions in Jhelum catchment, western

Himalaya. Journal of Hydrology 593. https://doi.org/10.1016/j.jhydrol.2020.125887

Azizi, A. H. & Asaoka, Y. 2020. Assessment of the impact of climate change on snow

distribution and river flows in a snow-dominated mountainous watershed in the Western

Hindukush–Himalaya. Afghanistan. Hydrology 7 (4), 74. doi:10.3390/hydrology7040074.

Azmat, M., Qamar, M., Huggel, C. & Hussain, E. 2018. Future climate and cryosphere

impacts on the hydrology of a scarcely gauged catchment on the Jhelum river

basin,Northern Pakistan Science of the Total Environment 639, 961–976.

doi:10.1016/j.scitotenv.2018.05.206.

Downloads

Published

2022-06-05

How to Cite

Jamal Hassan Ougahi. (2022). Assessment of climate change projections in the Chenab River Basin, Western Himalaya. International Journal of Innovations in Science & Technology, 4(Issue), 19–32. Retrieved from https://journal.50sea.com/index.php/IJIST/article/view/500

Similar Articles

You may also start an advanced similarity search for this article.