Assessment of climate change projections in the Chenab River Basin, Western Himalaya
Keywords:
GCM, Climate change, Temperature, Precipitation, Chenab River BasinAbstract
General circulation models (GCMs) are vital to project potential changes in future
climate under different emissions scenarios. Raw GCM output is not applicable at
regional scale due to biases relative to observational data and coarse spatial scale for
future climate predictions. Here, statistical downscaling method was employed to generate
daily maximum temperature (Tmax), minimum temperature (Tmin) and precipitation of
coarse spatial resolution of GCM (0.5 degree) which fall within the boundary of CRB. In this
study, the fifth generation ECMWF atmospheric reanalysis (ERA5) data was used as observed
data to downscale and bias-correct GFDL-ESM2M data under RCP4.5 and RCP8.5 emission
scenarios for the near future (2020-2050), mid-century (2051-2080) and end of century (2081-
2100) in the Chenab River Basin (CRB). The refined output from the GCM was further
analyzed to depict climate changes in the CRB. It was found that a consistent increase in
maximum temperature (Tmax) and minimum temperature (Tmin) was recorded under RCP4.5
and RCP8.5 in the future scenarios. In the CRB, the magnitude of increase in predicted Tmin
was higher than Tmax. However, precipitation showed an increasing trend in near future while
decreasing trend in the mid-century and end of century under RCP4.5.
References
Lawrimore, J. H., Menne, M. J., Gleason, B. E., Williams, C. N., Wuertz, D. B., Vose,
R. S., & Rennie, J. (2011). An overview of the Global Historical Climatology Network
monthly mean temperature data set, version 3. Journal of Geophysical Research Atmospheres,
(19), 1–18. https://doi.org/10.1029/2011JD016187
Rohde, R., Muller, R. A., Jacobsen, R., Muller, E., Perimutter, S., Rosenfeld, A.,
Wurtele, J., Groom, D., & Wickham, C. (2013). A New Estimate of the Average Earth
Surface Land Temperature Spanning 1753 to 2011. Geoinformatics & Geostatistics: An
Overview, 1 (1).
Hartmann, H., & Andresky, L. (2013). Flooding in the Indus River basin — A
spatiotemporal analysis of precipitation records. Global and Planetary Change, 107, 25–35.
https://doi.org/ 10.1016/j.gloplacha.2013.04.002
Folland, C. K., Boucher, O., Colman, A., & Parker, D. E. (2018). Causes of irregularities
in trends of global mean surface temperature since the late 19th century. Science Advances,
(6). https://doi.org/10.1126/sciadv.aao5297
Fyfe, J. C., Meehl, G. A., England, M. H., Mann, M. E., Santer, B. D., Flato, G. M.,
Hawkins, E., Gillett, N. P., Xie, S.-p., Kosaka, Y., & Swart, N. C. (2016). Making sense of
the early- 2000s warming slowdown. Nature Climate Change, 6 (3), 224–228. https:
//doi.org/10.1038/nclimate2938
Medhaug, I., Stolpe, M. B., Fischer, E. M., & Knutti, R. (2017). Reconciling
controversies about the ‘ global warming hiatus ’. Nature, 545, 41–47.
https://doi.org/10.1038/nature22315
Su, B., Huang, J., Gemmer, M., Jian, D., Tao, H., Jiang, T., & Zhao, C. (2016). Statistical
downscaling of CMIP5 multi-model ensemble for projected changes of climate in the
Indus River Basin. Atmospheric Research, 178-179, 138–149.
https://doi.org/10.1016/j.atmosres.2016.03.023
IPCC. (2018). Global Warming of 1.5°C. An IPCC Special Report on the impacts of global
warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the
context of strengthening the global response to the threat of climate change, Cambridge University
Press, Cambridge, United Kingdom; New York, NY, USA, Cambridge University Press,
Cambridge, United Kingdom; New York, NY, USA,
IPCC. (2013). Climate Change 2013 The Physical Science Basis Working Group I Contribution
to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (p. 1535 pp).
Cambridge University Press, Cambridge, United Kingdom; New York, NY, USA,
https://doi.org/10.1017/CBO9781107415324.Summary
Krishnan, R., Shrestha, A. B., Ren, G., Rajbhandari, R., Saeed, S., Sanjay, J., Syed, A.,
Vellore, R., Xu, Y., You, Q., & Ren, Y. (2019). Unravelling Climate Change in the Hindu
Kush Himalaya: Rapid Warming in the Mountains and Increasing Extremes. In The hindu
kush himalaya assessment (pp. 57–97). Springer International Publishing.
https://doi.org/10.1007/978-3-319-92288-1
Wang, Y., Wu, N., Kunze, C., Long, R., & Perlik, M. (2019). Drivers of Change to
Mountain Sustainability in the Hindu Kush Himalaya. In The hindu kush himalaya assessment mountains, climate change, sustainability and people (pp. 17–56). Springer International
Publishing. https://doi.org/10.1007/978-3-319-92288-1
Sheikh, M. M., Manzoor, N., Ashraf, J., Adnan, M., Collins, D., Hameed, S., Manton,
M. J., Ahmed, A. U., Baidya, S. K., Borgaonkar, H. P., Islam, N., Jayasinghearachchi, D.,
Kothawale, D. R., Premalal, K. H. M. S., Revadekar, J. V., & Shrestha, M. L. (2015). Trends
in extreme daily rainfall and temperature indices over South Asia. International Journal of
Climatology, 35 (7), 1625–1637. https://doi.org/10.1002/joc.4081
Fowler, H. J., & Archer, D. R. (2006). Conflicting signals of climatic change in the
upper Indus Basin. Journal of Climate, 19 (17), 4276–4293.
https://doi.org/10.1175/JCLI3860.1
Khattak, M. S., Babel, M. S., & Sharif, M. (2011). Hydro-meteorological trends in the
upper Indus River basin in Pakistan. Climate Research, 46 (2), 103–119.
https://doi.org/10.3354/cr00957
Chen, P.-c., Wang, Y.-h., You, G. J.-y., & Wei, C.-c. (2017). Comparison of methods
for non-stationary hydrologic frequency analysis : Case study using annual maximum daily
precipitation in Taiwan. Journal of Hydrology, 545, 197–211.
https://doi.org/10.1016/j.jhydrol.2016.12.001
Wu, F., Zhan, J., Su, H., Yan, H., & Ma, E. (2015). Scenario-Based Impact Assessment
of Land Use/Cover and Climate Changes on Watershed Hydrology in Heihe River Basin
of Northwest China. Advances in Meteorology, 2015. https://doi.org/10.1155/2015/410198
Gajbhiye, S., Meshram, C., Singh, S. K., & Srivastava, P. K. (2016). Precipitation trend
analysis of Sindh River basin , India , from 102-year record ( 1901 – 2002 ). Atmospheric
Science Letters, 77 (November 2015), 71–77. https://doi.org/10.1002/asl.602 [18] Ahmad,
W., Fatima, A., Awan, U. K., & Anwar, A. (2014). Analysis of long term meteorological
trends in the middle and lower Indus Basin of Pakistan-A non-parametric statistical
approach. Global and Planetary Change, 122, 282–291.
https://doi.org/10.1016/j.gloplacha.2014.09.007
Lutz, A. F., Immerzeel, W. W., Kraaijenbrink, P. D. A., Shrestha, A. B., & Bierkens,
M. F.P. (2016). Climate Change Impacts on the Upper Indus Hydrology : Sources , Shifts
and Extremes. PLoS ONE, 11 (11), 33. https://doi.org/10.1371/journal.pone.0165630
Kamworapan, S., & Surussavadee, C. (2019). Evaluation of CMIP5 global climate
models for simulating climatological temperature and precipitation for southeast Asia.
Advances in Meteorology, 2019. https://doi.org/10.1155/2019/1067365
Hawkins, B. Y. E. D., & Sutton, R. (2009). UNCERTAINTY IN REGIONAL.
American Meteorological Society, August, 1095–1108.
https://doi.org/10.1175/2009BAMS2607.1
Zheng, H., Chiew, F. H. S., Charles, S., & Podger, G. (2018). Future climate and
runoff projections across South Asia from CMIP5 global climate models and hydrological
modelling. Journal of Hydrology: Regional Studies, 18 (July), 92–109.
https://doi.org/10.1016/j.ejrh.2018.06.004
Knutti, R., & Sedlácek, J. (2013). Robustness and uncertainties in the new CMIP5
climate model projections. Nature Climate Change, 3 (4), 369–373.
https://doi.org/10.1038/nclimate1716
Milly, P. C. D., Betancourt, J., Falkenmark, M., Hirsch, R. M., Zbigniew, W.,
Lettenmaier,D. P., & Stouffer, R. J. (2008). Stationarity Is Dead : Whither Water
Management ? Climate Change, 319 (573-574).
Lutz, A. F., Immerzeel, W. W., Shrestha, A. B., & Bierkens, M. F. P. (2014). Consistent
increase in High Asia’s runoff due to increasing glacier melt and precipitation. Nature
Climate Change, 4 (7), 587–592. https://doi.org/10.1038/nclimate2237 [26] Grover, S., Tayal, S., Beldring, S. & Li, H. 2020 Modeling hydrological processes in
ungauged snow-fed catchment of western himalaya. Water Resources 47 (6), 987–995.
https://doi.org/10.1134/S0097807820060147.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Nicolas, J., Peubey,
C., Radu, R., Bonavita, M., Dee, D., Dragani, R., Flemming, J., Forbes, R., Geer, A.,
Hogan, R. J., Janisková, H. M., Keeley, S., Laloyaux, P., Cristina, P. L. & Thépaut, J. 2020
The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146,
–2049. https://doi.org/10.1002/qj.3803.
Albergel, C., Dutra, E., Munier, S., Calvet, J. & Munoz-sabater, J. 2018 ERA-5 and
ERA-Interim driven ISBA land surface model simulations : which one performs better ?
Hydrology and Earth System Sciences 22, 3515–3532
Ougahi JH, Mahmood SA (2022) Evaluation of satellite-based and reanalysis
precipitation datasets by hydrologic simulation in the Chenab river basin. J Wat Clim
Change. https:// doi. org/ 10. 2166/wcc20 22410
Ougahi JH, Cutler MEJ, Cook SJ (2021) Modelling climate change impact on water
resources of the Upper Indus Basin. J Wat Climat Change 13(2):482–504. https:// doi.
org/ 10. 2166/ wcc20 21233
Rajbhandari, R., Shrestha, A. B., Kulkarni, A., Patwardhan, S. K., & Bajracharya, S.
R.(2014). Projected changes in climate over the Indus river basin using a high resolution
regional climate model (PRECIS). Climate Dynamics, 44 (1-2), 339–357.
https://doi.org/10.1007/s0 0382-014-2183-8
Holman, I. P., Tascone, D., & Hess, T. M. (2009). A comparison of stochastic and
deterministic downscaling methods for modelling potential groundwater recharge under
climate change in East Anglia , UK : implications for groundwater resource management.
Hydrology Journal, 17, 1629–1641. https://doi.org/10.1007/s10040-009-0457-8
Ashfaq, A., M. Ashfaq, G. Rasul, S. A. Wajid, T. Khaliq, F. Rasul, U. Saeed, M. H. U.
Rahman, J. Hussain, I. A. Baig, S. A. A. Naqvi, S. A. A. Bokhari, S. Ahmad, W. Naseem,
G. Hoogenboom, 2015: Impact of climate change on the rice-wheat cropping system of
Pakistan. In: Handbook of Climate Change and Agro-ecosystems, Vol. 3 (editors) Hillel
D and Rosenzweig C. Imperial College Press and the American Society of Agronomy
−258.
Hassan, M., D. Penfei, W. Iqbal, W. Can, F. Wei, W. Ba, 2014: Temperature and
Precipitation Climatology Assessment over South Asia using the Regional Climate Model
(RegCM4.3): An Evaluation of the Model Performance. Journal of Earth Sciences and
Climatic Change 5: 214. DOI: 10.4172/2157–7617.1000214.
Mamgain, A., M. Laura, C. Erika, G. Filippo, and K. D. Sushil, 2013: Sensitivity of
RegCM4.3 two convection schemes on Indian summer monsoon for the South Asia
CORDEX domain. Geophysical Research Abstracts 15: 4812.
Sanderson, M.; Arbuthnott, K.; Kovats, S.; Hajat, S.; Falloon, P. The use of climate
information to estimate future mortality from high ambient temperature: A systematic
literature review. PLoS ONE 2017, 12, e0180369.
Vaghefi, S. A., Abbaspour, N., Kamali, B. & Abbaspour, K. C. 2017 A toolkit for
climate change analysis and pattern recognition for extreme weather conditions – case
study: California-Baja California Peninsula. Environmental Modelling and Software 96,
–198. doi:10.1016/j.envsoft.2017.06.033.
Akhtar, M., Ahmad, N. & Booij, M. J. 2009 Use of regional climate model simulations
as input for hydrological models for the Hindukush-Karakorum-Himalaya region.
Hydrology and Earth System Sciences 13 (7), 1075–1089. https://doi.org/10.5194/hess-
-1075-2009.
Palazzi, E., Hardenberg, J. Von & Provenzale, A. 2015 Precipitation in the
Karakoram-Himalaya: A CMIP5 view. Climate Dynamics 45,21–45.
https://doi.org/10.1007/s00382-014-2341-z.
Knutti, R. & Sedláček, J. 2013 Robustness and uncertainties in the new CMIP5 climate
model projections. Nature Climate Change 3 (4),369–373.
https://doi.org/10.1038/nclimate1716.
Grover, S., Tayal, S., Beldring, S. & Li, H. 2020 Modeling hydrological processes in
ungauged snow-fed catchment of western himalaya. Water Resources 47 (6), 987–995.
https://doi.org/10.1134/S0097807820060147.
Singh, P.; Ramasastri, K.S.; Kumar, N. Topographical Influence on precipitation
distribution in different ranges of Western Himalayas. Nord. Hydrol. 1995, 26, 259–284.
Sharma, A. & Thakur, N. S. 2017 Energy situation, current status and resource
potential of run of the river (RoR) large hydropower projects in Jammu and Kashmir:
India. Renewable and Sustainable Energy Reviews 78, 233–251.
http://dx.doi.org/10.1016/j.rser.2017.04.087.
Jasrotia, A. S., Baru, D., Kour, R., Ahmad, S. & Kour, K. 2021. Hydrological modeling
to simulate stream flow under changing climate conditions in Jhelum catchment, western
Himalaya. Journal of Hydrology 593. https://doi.org/10.1016/j.jhydrol.2020.125887
Azizi, A. H. & Asaoka, Y. 2020. Assessment of the impact of climate change on snow
distribution and river flows in a snow-dominated mountainous watershed in the Western
Hindukush–Himalaya. Afghanistan. Hydrology 7 (4), 74. doi:10.3390/hydrology7040074.
Azmat, M., Qamar, M., Huggel, C. & Hussain, E. 2018. Future climate and cryosphere
impacts on the hydrology of a scarcely gauged catchment on the Jhelum river
basin,Northern Pakistan Science of the Total Environment 639, 961–976.
doi:10.1016/j.scitotenv.2018.05.206.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 50SEA
This work is licensed under a Creative Commons Attribution 4.0 International License.