Novel Results on Refinement of Hermite-Hadamard Type Inequality with Applications Of ∆-Convex Function

Authors

  • Asif Arshad Department of Mathematics, Superior University, Lahore, Sargodha Campus, 40100 Sargodha, Pakistan
  • Shahid Mubeen Department of Mathematics, Baba Guru Nanak University, Nankana Sahib 39100, Pakistan
  • Aamir Shahzad Department of Mathematics, Baba Guru Nanak University, Nankana Sahib 39100, Pakistan
  • Tasadduq Niaz Department of Mathematics, Superior University, Lahore, Sargodha Campus, 40100 Sargodha, Pakistan
  • Sidra Ashraf Department of Mathematics, University of Sargodha, Sargodha 40100, Pakistan 5

Keywords:

Convex Functions, ∆-Convexity, Integral Type Inequalities, Hermite-Hadamard Type Inequality

Abstract

In this paper, we recognized novel results on the integral inequalities type of Hermite-Hadamard to explore the applications of ∆-convex functions. Our conclusion extends several established theorems in the literature.

References

D. S. Yongjin Cho, Imbunm Kim, “A fractional-order model for MINMOD Millennium,” Math. Biosci., vol. 262, pp. 36–45, 2015, doi: https://doi.org/10.1016/j.mbs.2014.11.008.

R. L. Magin and M. Ovadia, “Modeling the cardiac tissue electrode interface using fractional calculus,” JVC/Journal Vib. Control, vol. 14, no. 9–10, pp. 1431–1442, Sep. 2008, doi: 10.1177/1077546307087439;WEBSITE:WEBSITE:SAGE;WGROUP:STRING:PUBLICATION.

M. A. Moreles and R. Lainez, “Mathematical modelling of fractional order circuit elements and bioimpedance applications,” Commun. Nonlinear Sci. Numer. Simul., vol. 46, pp. 81–88, 2017, doi: https://doi.org/10.1016/j.cnsns.2016.10.020.

E. Reyes-Melo, J. Martinez-Vega, C. Guerrero-Salazar, and U. Ortiz-Mendez, “Application of fractional calculus to the modeling of dielectric relaxation phenomena in polymeric materials,” J. Appl. Polym. Sci., vol. 98, no. 2, pp. 923–935, Oct. 2005, doi: 10.1002/APP.22057;SUBPAGE:STRING:ABSTRACT;WEBSITE:WEBSITE:PERICLES;WGROUP:STRING:PUBLICATION.

R. Gorenflo and F. Mainardi, “Fractional Calculus,” Fractals Fract. Calc. Contin. Mech., pp. 223–276, 1997, doi: 10.1007/978-3-7091-2664-6_5.

B. Miller, S. and Ross, “An introduction to the Fractional Calculus and Fractional Differential Equations,” John Wiley Sons, USA, 1993, [Online]. Available: http://lib.ysu.am/disciplines_bk/b6c0b30496074d6bc08b794381aca81a.pdf

M. Z. Sarikaya, E. Set, H. Yaldiz, and N. Başak, “Hermite–Hadamard’s inequalities for fractional integrals and related fractional inequalities,” Math. Comput. Model., vol. 57, no. 9–10, pp. 2403–2407, 2013, [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0895717711008247?via%3Dihub

Udita N. Katugampola, “New approach to a generalized fractional integral,” Appl. Math. Comput., vol. 218, no. 3, pp. 860–865, 2011, doi: https://doi.org/10.1016/j.amc.2011.03.062.

M. Z. Sarikaya, “On the Hermite–Hadamard-type inequalities for co-ordinated convex function via fractional integrals,” Integr. Transform. Spec. Funct., vol. 25, no. 2, pp. 134–147, Feb. 2014, doi: 10.1080/10652469.2013.824436.

K. Balachandran, “Fractional Integrals and Derivatives,” Ind. Appl. Math., vol. Part F2113, pp. 143–157, 2023, doi: 10.1007/978-981-99-6080-4_6.

M. Z. Sarikaya and N. Aktan, “On the generalization of some integral inequalities and their applications,” Math. Comput. Model., vol. 54, no. 9–10, pp. 2175–2182, 2011, doi: https://doi.org/10.1016/j.mcm.2011.05.026.

S. Dragomir, J. Pečarić, and L. Persson, “Some inequalities of Hadamard type,” Mathematics, 1995.

G. Cristescu and L. Lupşa, “Non-Connected Convexities and Applications,” Book, vol. 68, 2002, doi: 10.1007/978-1-4615-0003-2.

M. V. G.D. Anderson, M.K. Vamanamurthy, “Generalized convexity and inequalities,” J. Math. Anal. Appl., vol. 335, no. 2, pp. 1294–1308, 2007, doi: https://doi.org/10.1016/j.jmaa.2007.02.016.

Z. Gao, M. Li, and J. R. Wang, “On some fractional Hermite–Hadamard inequalities via s-convex and s-Godunova–Levin functions and their applications,” Bol. la Soc. Mat. Mex., vol. 23, no. 2, pp. 691–711, Oct. 2017, doi: 10.1007/S40590-016-0087-9/METRICS.

E. A. Youness, “E-convex sets, E-convex functions, and E-convex programming,” J. Optim. Theory Appl., vol. 102, no. 2, pp. 439–450, 1999, doi: 10.1023/A:1021792726715/METRICS.

C. P. Niculescu and L.-E. Persson, “Convex Functions and Their Applications,” Springer, 2006, doi: 10.1007/0-387-31077-0.

K. I. N. & S. I. Shanhe Wu, Muhammad Uzair Awan, Muhammad Aslam Noor, “On a new class of convex functions and integral inequalities,” J. Inequalities Appl., 2019, doi: https://doi.org/10.1186/s13660-019-2074-y.

Bahtiyar Bayraktar, “Some New Inequalities of Hermite-Hadamard Type for Differentiable Godunova-Levin Functions via Fractional Integrals,” Konuralp J. Math., vol. 8, no. 1, p. 4, 2020, [Online]. Available: https://dergipark.org.tr/en/pub/konuralpjournalmath/issue/31494/585770

Downloads

Published

2025-08-14

How to Cite

Arshad, A., Mubeen, S., Shahzad, A., Niaz, T., & Sidra Ashraf. (2025). Novel Results on Refinement of Hermite-Hadamard Type Inequality with Applications Of ∆-Convex Function. International Journal of Innovations in Science & Technology, 7(3), 1904–1915. Retrieved from https://journal.50sea.com/index.php/IJIST/article/view/1460