Advances in AI-Based Land Use and Land Cover Classification: A Review of Deep Learning and Remote Sensing Integration
Keywords:
Land Use and Land Cover (LULC), Remote Sensing, Artificial Intelligence (AI), Deep Learning, Machine Learning, Satellite Imagery, Image ClassificationAbstract
The integration of Artificial Intelligence (AI) with remote sensing has transformed Land Use and Land Cover (LULC) classification, enabling more accurate, efficient, and scalable environmental monitoring. This review synthesizes recent advancements in AI-driven LULC classification, with a focus on deep learning, transfer learning, hybrid approaches, and explainable AI (XAI). Recent studies demonstrate that AI techniques significantly enhance classification accuracy and adaptability across diverse geospatial datasets, supporting applications such as urban expansion monitoring, ecological assessment, reforestation analysis, and real-time land management. Despite these advancements, challenges remain regarding spectral resolution, model interpretability, computational efficiency, and data scarcity. This review highlights these limitations and discusses emerging solutions, including multimodal data fusion, lightweight AI models, and scalable MLOps frameworks. The findings provide insights for researchers, practitioners, and policymakers to guide future work in sustainable land management and environmental monitoring.
References
J. V. Solórzano, J. F. Mas, Y. Gao, and J. A. Gallardo-Cruz, “Land Use Land Cover Classification with U-Net: Advantages of Combining Sentinel-1 and Sentinel-2 Imagery,” Remote Sens., vol. 13, no. 18, p. 3600, Sep. 2021, doi: 10.3390/rs13183600.
W. Khalid, S. K. Shamim, and A. Ahmad, “Synergistic approach for land use and land cover dynamics prediction in Uttarakhand using cellular automata and Artificial neural network,” Geomatica, vol. 76, no. 2, p. 100017, Dec. 2024, doi: 10.1016/j.geomat.2024.100017.
M. García-Ontiyuelo, C. Acuña-Alonso, C. Vasilakos, and X. Álvarez, “Strategies for detecting land-use change on the River Tea SCI ecological corridor via satellite images,” Sci. Total Environ., vol. 957, p. 177507, Dec. 2024, doi: 10.1016/j.scitotenv.2024.177507.
J. Park, S. Jang, R. Hong, K. Suh, and I. Song, “Development of Land Cover Classification Model Using AI Based FusionNet Network,” Remote Sens., vol. 12, no. 19, p. 3171, Sep. 2020, doi: 10.3390/rs12193171.
H. Shafizadeh-Moghadam, M. Khazaei, S. K. Alavipanah, and Q. Weng, “Google Earth Engine for large-scale land use and land cover mapping: an object-based classification approach using spectral, textural and topographical factors,” GIScience Remote Sens., vol. 58, no. 6, pp. 914–928, Aug. 2021, doi: 10.1080/15481603.2021.1947623.
S. Amini, M. Saber, H. Rabiei-Dastjerdi, and S. Homayouni, “Urban Land Use and Land Cover Change Analysis Using Random Forest Classification of Landsat Time Series,” Remote Sens., vol. 14, no. 11, p. 2654, Jun. 2022, doi: 10.3390/rs14112654.
M. Khan, A. Hanan, M. Kenzhebay, M. Gazzea, and R. Arghandeh, “Transformer-based land use and land cover classification with explainability using satellite imagery,” Sci. Rep., vol. 14, no. 1, Jul. 2024, doi: 10.1038/s41598-024-67186-4.
C. Zhang, P. A. Harrison, X. Pan, H. Li, I. Sargent, and P. M. Atkinson, “Scale Sequence Joint Deep Learning (SS-JDL) for land use and land cover classification,” Remote Sens. Environ., vol. 237, p. 111593, Feb. 2020, doi: 10.1016/j.rse.2019.111593.
A. Temenos, N. Temenos, M. Kaselimi, A. Doulamis, and N. Doulamis, “Interpretable Deep Learning Framework for Land Use and Land Cover Classification in Remote Sensing Using SHAP,” IEEE Geosci. Remote Sens. Lett., vol. 20, pp. 1–5, 2023, doi: 10.1109/lgrs.2023.3251652.
V. Pushpalatha, P. B. Mallikarjuna, H. N. Mahendra, S. Rama Subramoniam, and S. Mallikarjunaswamy, “Land use and land cover classification for change detection studies using convolutional neural network,” Appl. Comput. Geosci., vol. 25, p. 100227, Feb. 2025, doi: 10.1016/j.acags.2025.100227.
A. M. Burgueño-Romero, C. Barba-González, and J. F. Aldana-Montes, “Big Data-driven MLOps workflow for annual high-resolution land cover classification models,” Future Gener. Comput. Syst., vol. 163, p. 107499, Feb. 2025, doi: 10.1016/j.future.2024.107499.
J. Ai, C. Zhang, L. Chen, and D. Li, “Mapping Annual Land Use and Land Cover Changes in the Yangtze Estuary Region Using an Object-Based Classification Framework and Landsat Time Series Data,” Sustainability, vol. 12, no. 2, p. 659, Jan. 2020, doi: 10.3390/su12020659.
S. Kunwar and J. Ferdush, “Mapping of Land Use and Land Cover (LULC) Using EuroSAT and Transfer Learning,” Rev. Int. Géomat., vol. 33, no. 1, pp. 1–13, 2024, doi: 10.32604/rig.2023.047627.
C. Xu, J. Wang, Y. Sun, M. Liu, J. Liu, and M. M. Sajjad, “Deep learning-driven land cover monitoring and landscape ecological health assessment: A dynamic study in coastal regions of the China–Pakistan Economic Corridor from 2000 to 2023,” Ecol. Indic., vol. 169, p. 112860, Dec. 2024, doi: 10.1016/j.ecolind.2024.112860.
C. Yue, Z. Wang, and J. Wang, “Spatio-temporal change and driving mechanisms of land use/cover in Qarhan Salt Lake area during from 2000 to 2020, based on machine learning,” Res. Cold Arid Reg., vol. 16, no. 5, pp. 239–249, Oct. 2024, doi: 10.1016/j.rcar.2024.10.003.
E. A. Alshari, M. B. Abdulkareem, and B. W. Gawali, “Classification of land use/land cover using artificial intelligence (ANN-RF),” Front. Artif. Intell., vol. 5, Jan. 2023, doi: 10.3389/frai.2022.964279.
M. Pandey, A. Mishra, S. L. Swamy, J. T. Anderson, and T. K. Thakur, “Machine learning-based monitoring of land cover and reclamation plantations on coal-mined landscape using Sentinel 2 data,” Environ. Sustain. Indic., vol. 25, p. 100585, Feb. 2025, doi: 10.1016/j.indic.2025.100585.
A. M. Abdi, “Land cover and land use classification performance of machine learning algorithms in a boreal landscape using Sentinel-2 data,” GIScience Remote Sens., vol. 57, no. 1, pp. 1–20, Jan. 2020, doi: 10.1080/15481603.2019.1650447.
J. Jagannathan and C. Divya, “Deep learning for the prediction and classification of land use and land cover changes using deep convolutional neural network,” Ecol. Inform., vol. 65, p. 101412, Nov. 2021, doi: 10.1016/j.ecoinf.2021.101412.
A. Azedou, A. Amine, I. Kisekka, S. Lahssini, Y. Bouziani, and S. Moukrim, “Enhancing Land Cover/Land Use (LCLU) classification through a comparative analysis of hyperparameters optimization approaches for deep neural network (DNN),” Ecol. Inform., vol. 78, p. 102333, Dec. 2023, doi: 10.1016/j.ecoinf.2023.102333.
V. Anand and B. Oinam, “Future land use land cover prediction with special emphasis on urbanization and wetlands,” Remote Sens. Lett., vol. 11, no. 3, pp. 225–234, Mar. 2020, doi: 10.1080/2150704x.2019.1704304.
C. F. Brown et al., “Dynamic World, Near real-time global 10 m land use land cover mapping,” Sci. Data, vol. 9, no. 1, Jun. 2022, doi: 10.1038/s41597-022-01307-4.
D. Tewabe and T. Fentahun, “Assessing land use and land cover change detection using remote sensing in the Lake Tana Basin, Northwest Ethiopia,” Cogent Environ. Sci., vol. 6, no. 1, Jan. 2020, doi: 10.1080/23311843.2020.1778998.

Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 50sea

This work is licensed under a Creative Commons Attribution 4.0 International License.