Prospects of Biosynthetically produced Nanoparticles in Biocontrol of Pests and Phytopathogens: A review

Prospects of Biosynthetically produced Nanoparticles in Biocontrol of Pests and Phytopathogens


  • sumaira mazhar lahore garrison university


Biocontrol, Biosynthesized Nanoparticles, Photosynthesis, Microbial synthesis, Green Technology, Pests, Phytopathogens, Larvicidal, Ovicidal


Modern nanotechnology is playing a vital role in our daily life by contributing in different domains such as usage of nanoparticles for target-specific drug delivery system, as these nanoparticle are being used as scratch proof coating on glass for tracking of biomolecules. Some emerging applications of nanoparticles include usage of nanoparticles for diagnostic purposes such as biomedical imaging and as green technology producing nano pesticides. The use of endophytic or plant beneficial bacteria for the production of metallic nanoparticles have shown promising results in not only controlling the pest but also contributing in enhanced developmental growth due to their small size, target specificity, and enhanced interaction with the plant in controlled environment. As for increasing environmental crisis, use of biological methods to remediate the environment is becoming a necessity. Green technology based nano-materials being used now a days in multiple fields, especially in bio-control of pests. This review is based on the microbial synthesized metallic nanoparticles, which are being used as nano pesticides (nanoparticles are pesticides).


J. M. Palomo, “Nanobiohybrids: a new concept for metal nanoparticles synthesis,” Chem. Commun., vol. 55, no. 65, pp. 9583–9589, Aug. 2019, doi: 10.1039/C9CC04944D.

Y. S. Pestovsky and A. Martínez-Antonio, “The use of nanoparticles and nanoformulations in agriculture,” J. Nanosci. Nanotechnol., vol. 17, no. 12, pp. 8699–8730, 2017, doi: 10.1166/JNN.2017.15041.

G. Benelli, “Mode of action of nanoparticles against insects,” Environ. Sci. Pollut. Res. Int., vol. 25, no. 13, pp. 12329–12341, May 2018, doi: 10.1007/S11356-018-1850-4.

H. Duan, D. Wang, and Y. Li, “Green chemistry for nanoparticle synthesis,” Chem. Soc. Rev., vol. 44, no. 16, pp. 5778–5792, Aug. 2015, doi: 10.1039/C4CS00363B.

A.-R. Shahverdi, M. Shakibaie, and P. Nazari, “Basic and Practical Procedures for Microbial Synthesis of Nanoparticles,” Met. Nanoparticles Microbiol., pp. 177–195, 2011, doi: 10.1007/978-3-642-18312-6_8.

M. Razavi, E. Salahinejad, M. Fahmy, M. Yazdimamaghani, D. Vashaee, and L. Tayebi, “Green chemical and biological synthesis of nanoparticles and their biomedical applications,” Green Process. Nanotechnol. From Inorg. to Bioinspired Nanomater., pp. 207–235, Jan. 2015, doi: 10.1007/978-3-319-15461-9_7/COVER/.

S. Mazhar, R. Yasmeen, A. Chaudhry, and K. Summia, “Role of Microorganisms in Modern Food Industry,” Int. J. Innov. Sci. Technol., vol. 4, no. 1, pp. 65–77, 2022.

D. Septiadi, F. Crippa, T. L. Moore, B. Rothen-Rutishauser, and A. Petri-Fink, “Nanoparticle–Cell Interaction: A Cell Mechanics Perspective,” Adv. Mater., vol. 30, no. 19, p. 1704463, May 2018, doi: 10.1002/ADMA.201704463.

C. A. S. Batista, R. G. Larson, and N. A. Kotov, “Nonadditivity of nanoparticle interactions,” Science (80-. )., vol. 350, no. 6257, Oct. 2015, doi: 10.1126/SCIENCE.1242477/ASSET/5E558520-CD42-44B7-B743-ACC7333CFEE2/ASSETS/GRAPHIC/350_1242477_FA.JPEG.

S. Iravani, H. Korbekandi, S. V. Mirmohammadi, and B. Zolfaghari, “Synthesis of silver nanoparticles: chemical, physical and biological methods,” Res. Pharm. Sci., vol. 9, no. 6, p. 385, Dec. 2014.

N. Durán, M. Durán, M. B. de Jesus, A. B. Seabra, W. J. Fávaro, and G. Nakazato, “Silver nanoparticles: A new view on mechanistic aspects on antimicrobial activity,” Nanomedicine Nanotechnology, Biol. Med., vol. 12, no. 3, pp. 789–799, Apr. 2016, doi: 10.1016/J.NANO.2015.11.016.

C. Lodewyckx et al., “Endophytic bacteria and their potential applications,” CRC. Crit. Rev. Plant Sci., vol. 21, no. 6, pp. 583–606, 2002, doi: 10.1080/0735-260291044377.

M. P. Mishra and R. N. Padhy, “Antibacterial activity of green silver nanoparticles synthesized from Anogeissus acuminata against multidrug resistant urinary tract infecting bacteria in vitro and host-toxicity testing,”, vol. 16, no. 2, pp. 120–125, May 2018, doi: 10.1016/J.JAB.2017.11.003.

C. Chen, E. M. Bauske, G. Musson, R. Rodríguez Kábana, and J. W. Kloepper, “Biological Control of Fusarium Wilt on Cotton by Use of Endophytic Bacteria,” Biol. Control, vol. 5, no. 1, pp. 83–91, Mar. 1995, doi: 10.1006/BCON.1995.1009.

R. Anand, L. Paul, and C. Chanway, “Research on Endophytic Bacteria: Recent Advances with Forest Trees,” Microb. Root Endophytes, pp. 89–106, May 2006, doi: 10.1007/3-540-33526-9_6.

P. Balint-Kurti, “The plant hypersensitive response: concepts, control and consequences,” Mol. Plant Pathol., vol. 20, no. 8, p. 1163, Aug. 2019, doi: 10.1111/MPP.12821.

A. Hashem, E. F. Abd-Allah, A. A. Alqarawi, A. A. Al-Huqail, S. Wirth, and D. Egamberdieva, “The interaction between arbuscular mycorrhizal fungi and endophytic bacteria enhances plant growth of Acacia gerrardii under salt stress,” Front. Microbiol., vol. 7, no. JUL, p. 1089, Jul. 2016, doi: 10.3389/FMICB.2016.01089/BIBTEX.

E. J. Wagenmakers, T. Lodewyckx, H. Kuriyal, and R. Grasman, “Bayesian hypothesis testing for psychologists: A tutorial on the Savage–Dickey method,” Cogn. Psychol., vol. 60, no. 3, pp. 158–189, May 2010, doi: 10.1016/J.COGPSYCH.2009.12.001.

A. Nath Yadav, “Plant Growth Promoting Bacteria: Biodiversity and Multifunctional Attributes for Sustainable Agriculture,” Adv. Biotechnol. Microbiol., vol. 5, no. 5, Aug. 2017, doi: 10.19080/AIBM.2017.05.555671.

Y. S. Ku, H. M. Rehman, and H. M. Lam, “Possible Roles of Rhizospheric and Endophytic Microbes to Provide a Safe and Affordable Means of Crop Biofortification,” Agron. 2019, Vol. 9, Page 764, vol. 9, no. 11, p. 764, Nov. 2019, doi: 10.3390/AGRONOMY9110764.

S. Zhang, T. L. White, M. C. Martinez, J. A. McInroy, J. W. Kloepper, and W. Klassen, “Evaluation of plant growth-promoting rhizobacteria for control of Phytophthora blight on squash under greenhouse conditions,” Biol. Control, vol. 53, no. 1, pp. 129–135, Apr. 2010, doi: 10.1016/J.BIOCONTROL.2009.10.015.

A. V. Sturz, “The role of endophytic bacteria during seed piece decay and potato tuberization,” Plant Soil 1995 1752, vol. 175, no. 2, pp. 257–263, Aug. 1995, doi: 10.1007/BF00011362.

C. O. Ogunkunle et al., “Effect of Low-Dose Nano Titanium Dioxide Intervention on Cd Uptake and Stress Enzymes Activity in Cd-Stressed Cowpea [Vigna unguiculata (L.) Walp] Plants,” Bull. Environ. Contam. Toxicol. 2020 1045, vol. 104, no. 5, pp. 619–626, Mar. 2020, doi: 10.1007/S00128-020-02824-X.

P. Christian, F. Von Der Kammer, M. Baalousha, and T. Hofmann, “Nanoparticles: Structure, properties, preparation and behaviour in environmental media,” Ecotoxicology, vol. 17, no. 5, pp. 326–343, 2008, doi: 10.1007/s10646-008-0213-1.

A. Moudgil, A. S. Deval, M. S. Dharne, D. M. Sarkar, A. S. Choudhari, and B. P. Chaudhari, “Eichhornia crassipes Mediated Bioinspired Synthesis of Crystalline Nano Silver as an Integrated Medicinal Material: A Waste to Value Approach,” J. Clust. Sci. 2020 322, vol. 32, no. 2, pp. 391–404, Apr. 2020, doi: 10.1007/S10876-020-01797-5.

B. Mehdaoui et al., “Optimal Size of Nanoparticles for Magnetic Hyperthermia: A Combined Theoretical and Experimental Study,” Adv. Funct. Mater., vol. 21, no. 23, pp. 4573–4581, Dec. 2011, doi: 10.1002/ADFM.201101243.

C. A. Ottoni et al., “Screening of filamentous fungi for antimicrobial silver nanoparticles synthesis,” AMB Express, vol. 7, no. 1, pp. 1–10, Dec. 2017, doi: 10.1186/S13568-017-0332-2/FIGURES/6.

R. Prasad, B. Siddhardha, and M. Dyavaiah, Eds., “Nanostructures for Antimicrobial and Antibiofilm Applications,” 2020, doi: 10.1007/978-3-030-40337-9.

J. Li et al., “Green synthesis of silver nanoparticles–graphene oxide nanocomposite and its application in electrochemical sensing oftryptophan,” Biosens. Bioelectron., vol. 42, no. 1, pp. 198–206, Apr. 2013, doi: 10.1016/J.BIOS.2012.10.029.

N. Padmavathy and R. Vijayaraghavan, “Interaction of ZnO nanoparticles with microbes--a physio and biochemical assay,” J. Biomed. Nanotechnol., vol. 7, no. 6, pp. 813–822, Dec. 2011, doi: 10.1166/JBN.2011.1343.

K. D. Leuba, N. G. Durmus, E. N. Taylor, and T. J. Webster, “Short communication: Carboxylate functionalized superparamagnetic iron oxide nanoparticles (SPION) for the reduction of S. aureus growth post biofilm formation,” Int. J. Nanomedicine, vol. 8, pp. 731–736, Feb. 2013, doi: 10.2147/IJN.S38256.

A. M. Awwad, N. M. Salem, M. M. Aqarbeh, and F. M. Abdulaziz, “Green synthesis , characterization of silver sulfide nanoparticles and antibacterial activity evaluation,” vol. 6, no. 1, pp. 42–48, 2020, doi: 10.5281/zenodo.3243157.

L. Wang and J. Lin, “Phenylalanine-Rich Peptide Mediated Binding with Graphene Oxide and Bioinspired Synthesis of Silver Nanoparticles for Electrochemical Sensing,” Appl. Sci. 2017, Vol. 7, Page 160, vol. 7, no. 2, p. 160, Feb. 2017, doi: 10.3390/APP7020160.

S. Gurunathan, J. W. Han, D. N. Kwon, and J. H. Kim, “Enhanced antibacterial and anti-biofilm activities of silver nanoparticles against Gram-negative and Gram-positive bacteria,” Nanoscale Res. Lett., vol. 9, no. 1, pp. 1–17, 2014, doi: 10.1186/1556-276X-9-373.

S. Gurunathan et al., “Biosynthesis, purification and characterization of silver nanoparticles using Escherichia coli,” Colloids Surfaces B Biointerfaces, vol. 74, no. 1, pp. 328–335, Nov. 2009, doi: 10.1016/J.COLSURFB.2009.07.048.

G. R. Bhimanapati et al., “Recent Advances in Two-Dimensional Materials beyond Graphene,” ACS Nano, vol. 9, no. 12, pp. 11509–11539, Nov. 2015, doi: 10.1021/ACSNANO.5B05556/ASSET/IMAGES/MEDIUM/NN-2015-055569_0014.GIF.

L. Actis, A. Srinivasan, J. L. Lopez-Ribot, A. K. Ramasubramanian, and J. L. Ong, “Effect of silver nanoparticle geometry on methicillin susceptible and resistant Staphylococcus aureus, and osteoblast viability,” J. Mater. Sci. Mater. Med., vol. 26, no. 7, Jul. 2015, doi: 10.1007/S10856-015-5538-8.

I. V. Sukhorukova et al., “Toward bioactive yet antibacterial surfaces,” Colloids Surf. B. Biointerfaces, vol. 135, pp. 158–165, Nov. 2015, doi: 10.1016/J.COLSURFB.2015.06.059.

M. Arakha et al., “Antimicrobial activity of iron oxide nanoparticle upon modulation of nanoparticle-bacteria interface,” Sci. Reports 2015 51, vol. 5, no. 1, pp. 1–12, Oct. 2015, doi: 10.1038/srep14813.

H. Guo, J. B. Callaway, and J. P. Y. Ting, “Inflammasomes: mechanism of action, role in disease, and therapeutics,” Nat. Med. 2015 217, vol. 21, no. 7, pp. 677–687, Jun. 2015, doi: 10.1038/nm.3893.

S. Basharat, S. Mazhar, R. Yasmeen, and W. Hamid, “Evaluation of Microbial Contamination via Wastewater Collected from Different Oil Industries and its Treatment Using Various Coagulants,” Int. J. Innov. Sci. Technol., vol. 4, no. 2, pp. 392–403, 2022.

M. Saliani, R. Jalal, and E. K. Goharshadi, “Effects of pH and Temperature on Antibacterial Activity of Zinc Oxide Nanofluid Against Escherichia coli O157: H7 and Staphylococcus aureus,” Jundishapur J. Microbiol., vol. 8, no. 2, pp. 1–6, Feb. 2015, doi: 10.5812/JJM.17115.

E. Bayroodi and R. Jalal, “Modulation of antibiotic resistance in Pseudomonas aeruginosa by ZnO nanoparticles,” Iran. J. Microbiol., vol. 8, no. 2, p. 85, 2016.

K. S. Siddiqi and A. Husen, “Fabrication of Metal Nanoparticles from Fungi and Metal Salts: Scope and Application,” Nanoscale Res. Lett. 2016 111, vol. 11, no. 1, pp. 1–15, Feb. 2016, doi: 10.1186/S11671-016-1311-2.

G. Benelli, “Plant-mediated biosynthesis of nanoparticles as an emerging tool against mosquitoes of medical and veterinary importance: a review,” Parasitol. Res., vol. 115, no. 1, pp. 23–34, Jan. 2016, doi: 10.1007/S00436-015-4800-9.

K. Bahrami, P. Nazari, Z. Sepehrizadeh, B. Zarea, and A. R. Shahverdi, “Microbial synthesis of antimony sulfide nanoparticles and their characterization,” Ann. Microbiol., vol. 62, no. 4, pp. 1419–1425, Dec. 2012, doi: 10.1007/S13213-011-0392-5/FIGURES/5.

S. Baker and S. Shreedharmurthy, “Antimicrobial activity and biosynthesis of nanoparticles by endophytic bacterium inhabiting Coffee arabica L .,” Sci. J. Biol. Sci., vol. 1, no. 5, pp. 107–113, 2012.

“Endophytes: Toward a vision in synthesis of nanoparticlefor future therapeutic agents - uomeprints.” .

A. Fariq, T. Khan, and A. Yasmin, “Microbial synthesis of nanoparticles and their potential applications in biomedicine,” J. Appl. Biomed., vol. 15, no. 4, pp. 241–248, Nov. 2017, doi: 10.1016/J.JAB.2017.03.004.

I. R. Imran, “Environmental Factors as Diabetogenic Agent in Type 2 Diabetes Mellitus,” Int. J. Innov. Sci. Technol., vol. 4, no. April, pp. 288–299, 2022.

Y.-C. Lee and J.-Y. Moon, “Bionanotechnology in Agriculture, Food, Cosmetic and Cosmeceutical,” Introd. to Bionanotechnol., pp. 199–217, 2020, doi: 10.1007/978-981-15-1293-3_11.

H. H. Amin, “Biosynthesized silver nanoparticles using Ulva lactuca as a safe synthetic pesticide (in vitro),” Open Agric., vol. 5, no. 1, pp. 291–299, Jan. 2020, doi: 10.1515/OPAG-2020-0032/MACHINEREADABLECITATION/RIS.

L. Hajji-Hedfi and H. Chhipa, “Nano-based pesticides: challenges for pest and disease management,” Euro-Mediterranean J. Environ. Integr. 2021 63, vol. 6, no. 3, pp. 1–8, Sep. 2021, doi: 10.1007/S41207-021-00279-Y.

J. Bhattacharya, R. Nitnavare, A. Shankhapal, and S. Ghosh, “Microbially synthesized nanoparticles: aspect in plant disease management,” Biocontrol Mech. Endophytic Microorg., pp. 303–325, Jan. 2022, doi: 10.1016/B978-0-323-88478-5.00007-9.

H. Chopra et al., “Green Metallic Nanoparticles: Biosynthesis to Applications,” Front. Bioeng. Biotechnol., vol. 10, p. 548, Apr. 2022, doi: 10.3389/FBIOE.2022.874742/BIBTEX.




How to Cite

mazhar, sumaira. (2022). Prospects of Biosynthetically produced Nanoparticles in Biocontrol of Pests and Phytopathogens: A review: Prospects of Biosynthetically produced Nanoparticles in Biocontrol of Pests and Phytopathogens. International Journal of Innovations in Science & Technology, 4(2), 552–563. Retrieved from