Potential Challenges and Solutions for Implementing NOMA in Smart Grid
Keywords:
Smart Grid (SG), Smart Meter (SM) , Non-orthogonal Multiple Access (NOMA), Power Division Multiple Access (PDMA), Successive Interference Cancellation (SIC)Abstract
Efficient two-way communication is crucial for Smart Grid (SG) networks, enabling real-time monitoring, data collection, and control. This study introduces the novel integration of Non-Orthogonal Multiple Access (NOMA) into SG systems to enhance spectral efficiency and support numerous smart devices, addressing the limitations of traditional communication methods. A comprehensive survey of existing wired and wireless communication technologies was conducted, followed by the implementation of a NOMA scheme tailored for SG environments. Results demonstrate that NOMA significantly improves spectral efficiency, enables access to a large number of smart meters, and enhances the system's resilience to electromagnetic interference. Additionally, the study addresses challenges such as impulse noise, optimizing spectral and energy efficiency tradeoffs, and power consumption in interference cancellation. These findings underscore the potential of NOMA to revolutionize SG communication infrastructure. Conclusively, integrating NOMA in SG networks offers a robust solution for future smart grid communication needs.
References
C. Kang, D. Kirschen, and T. C. Green, “The Evolution of Smart Grids [Scanning the Issue],” Proc. IEEE, vol. 111, no. 7, pp. 691–693, Jul. 2023, doi: 10.1109/JPROC.2023.3284213.
M. Hussain and H. Rasheed, “Communication Infrastructure for Stationary and Organized Distributed Smart Meters,” 2019 2nd Int. Conf. Commun. Comput. Digit. Syst. C-CODE 2019, pp. 17–22, Apr. 2019, doi: 10.1109/C-CODE.2019.8681020.
K. A. Abdulsalam, J. Adebisi, M. Emezirinwune, and O. Babatunde, “An overview and multicriteria analysis of communication technologies for smart grid applications,” e-Prime - Adv. Electr. Eng. Electron. Energy, vol. 3, p. 100121, Mar. 2023, doi: 10.1016/J.PRIME.2023.100121.
M. Hussain and H. Rasheed, “Performance of Orthogonal Beamforming with NOMA for Smart Grid Communication in the Presence of Impulsive Noise,” Arab. J. Sci. Eng., vol. 45, no. 8, pp. 6331–6345, Aug. 2020, doi: 10.1007/S13369-020-04457-Y/METRICS.
M. Hussain and H. Rasheed, “A Computational Power Allocation Scheme for Fair NOMA Downlink System,” J. Inf. Commun. Technol. Robot. Appl., pp. 73–79, Jun. 2018, Accessed: May 20, 2024. [Online]. Available: https://jictra.com.pk/index.php/jictra/article/view/83
M. Hussain and H. Rasheed, “Nonorthogonal multiple access for next-generation mobile networks: A technical aspect for research direction,” Wirel. Commun. Mob. Comput., vol. 2020, 2020, doi: 10.1155/2020/8845371.
H. Gozde, M. C. Taplamacioglu, M. Ari, and H. Shalaf, “4G/LTE technology for smart grid communication infrastructure,” 2015 3rd Int. Istanbul Smart Grid Congr. Fair, ICSG 2015, Dec. 2015, doi: 10.1109/SGCF.2015.7354914.
“Review of Communication Technologies for Smart Grid applications.” Accessed: May 28, 2024. [Online]. Available: https://www.researchgate.net/publication/322555918_Review_of_Communication_Technologies_for_Smart_Grid_applications
M. Hussain and H. Rasheed, “Performance of Orthogonal Beamforming with NOMA for Smart Grid Communication in the Presence of Impulsive Noise,” Arab. J. Sci. Eng., vol. 45, no. 8, pp. 6331–6345, Aug. 2020, doi: 10.1007/S13369-020-04457-Y/METRICS.
“NextG Communications Research and Development Gaps Report”, [Online]. Available: https://www.nist.gov/publications/nextg-communications-research-and-development-gaps-report
A. Maneerung, S. Sittichivapak, and K. Hongesombut, “Application of power line communication with OFDM to smart grid system,” Proc. - 2011 8th Int. Conf. Fuzzy Syst. Knowl. Discov. FSKD 2011, vol. 4, pp. 2239–2244, 2011, doi: 10.1109/FSKD.2011.6020014.
R. Fantacci and S. Morosi, “Multicarrier spread spectrum techniques for downstream power-line communications on low voltage grid,” Int. J. Commun. Syst., vol. 16, no. 5, pp. 401–416, Jun. 2003, doi: 10.1002/DAC.599.
M. Katayama, T. Yamazato, and H. Okada, “A mathematical model of noise in narrowband power line communication systems,” IEEE J. Sel. Areas Commun., vol. 24, no. 7, pp. 1267–1276, Jul. 2006, doi: 10.1109/JSAC.2006.874408.
V. C. Gungor and F. C. Lambert, “A survey on communication networks for electric system automation,” Comput. Networks, vol. 50, no. 7, pp. 877–897, May 2006, doi: 10.1016/J.COMNET.2006.01.005.
P. Yi, A. Iwayemi, and C. Zhou, “Developing ZigBee deployment guideline under WiFi interference for smart grid applications,” IEEE Trans. Smart Grid, vol. 2, no. 1, pp. 110–120, 2011, doi: 10.1109/TSG.2010.2091655.
“Bluetooth group explores apps in smart grid - EE Times.” Accessed: May 28, 2024. [Online]. Available: https://www.eetimes.com/bluetooth-group-explores-apps-in-smart-grid/
P. P. Parikh, M. G. Kanabar, and T. S. Sidhu, “Opportunities and challenges of wireless communication technologies for smart grid applications,” IEEE PES Gen. Meet. PES 2010, 2010, doi: 10.1109/PES.2010.5589988.
G. D. Castellanos and J. Y. Khan, “Performance analysis of WiMAX polling service for smart grid meter reading applications,” 2012 IEEE Colomb. Commun. Conf. COLCOM 2012 - Conf. Proc., 2012, doi: 10.1109/COLCOMCON.2012.6233661.
C. Muller, M. Putzke, and C. Wietfeld, “Traffic engineering analysis of Smart Grid services in cellular networks,” 2012 IEEE 3rd Int. Conf. Smart Grid Commun. SmartGridComm 2012, pp. 252–257, 2012, doi: 10.1109/SMARTGRIDCOMM.2012.6485992.
V. C. Güngör et al., “Smart grid technologies: Communication technologies and standards,” IEEE Trans. Ind. Informatics, vol. 7, no. 4, pp. 529–539, Nov. 2011, doi: 10.1109/TII.2011.2166794.
A. Meloni and L. Atzori, “The Role of Satellite Communications in the Smart Grid,” IEEE Wirel. Commun., vol. 24, no. 2, pp. 50–56, Apr. 2017, doi: 10.1109/MWC.2017.1600251.
A. B. Bodonyi, “Effects of Impulse Noise on Digital Data Transmission,” IRE Trans. Commun. Syst., vol. 9, no. 4, pp. 355–361, 1961, doi: 10.1109/TCOM.1961.1097716.
“An Advanced 2-Output DNN Model for Impulse Noise Mitigation in NOMA-Enabled Smart Energy Meters | International Journal of Innovations in Science & Technology.” Accessed: May 28, 2024. [Online]. Available: https://journal.50sea.com/index.php/IJIST/article/view/740
A. Laya, K. Wang, A. A. Widaa, J. Alonso-Zarate, J. Markendahl, and L. Alonso, “Device-to-device communications and small cells: Enabling spectrum reuse for dense networks,” IEEE Wirel. Commun., vol. 21, no. 4, pp. 98–105, 2014, doi: 10.1109/MWC.2014.6882301.
B. Holfeld, S. Jaeckel, L. Thiele, T. Wirth, and K. Scheppelmann, “Smart grid communications: LTE outdoor field trials at 450 MHz,” IEEE Veh. Technol. Conf., vol. 2015, Jul. 2015, doi: 10.1109/VTCSPRING.2015.7146091.
E. Shafter, A. Noorwali, and R. K. Rao, “OFDM systems with CPM mappers for smart grid applications,” 2015 IEEE Electr. Power Energy Conf. Smarter Resilient Power Syst. EPEC 2015, pp. 424–428, Jan. 2016, doi: 10.1109/EPEC.2015.7379988.
G. Al-Juboori, A. Doufexi, and A. R. Nix, “Feasibility study of OFDM-MFSK modulation scheme for smart metering technology,” 2017 IEEE PES Innov. Smart Grid Technol. Conf. Eur. ISGT-Europe 2017 - Proc., vol. 2018-January, pp. 1–6, Jul. 2017, doi: 10.1109/ISGTEUROPE.2017.8260200.
J. Brown and J. Y. Khan, “Performance comparison of LTE FDD and TDD based Smart Grid communications networks for uplink biased traffic,” 2012 IEEE 3rd Int. Conf. Smart Grid Commun. SmartGridComm 2012, pp. 276–281, 2012, doi: 10.1109/SMARTGRIDCOMM.2012.6485996.
G. C. Madueño, Č. Stefanović, and P. Popovski, “Reengineering GSM/GPRS towards a dedicated network for massive smart metering,” 2014 IEEE Int. Conf. Smart Grid Commun. SmartGridComm 2014, pp. 338–343, Jan. 2015, doi: 10.1109/SMARTGRIDCOMM.2014.7007669.
F. Aalamifar and L. Lampe, “Optimized WiMAX Profile Configuration for Smart Grid Communications,” IEEE Trans. Smart Grid, vol. 8, no. 6, pp. 2723–2732, Nov. 2017, doi: 10.1109/TSG.2016.2536145.
C. C. Tseng, L. Wang, and C. H. Kuo, “Application of hybrid mixing CDMA/IDMA/OCDMA/OIDMA for smart grid integration of renewable-energy resources,” Proc. - 2016 IEEE Int. Symp. Comput. Consum. Control. IS3C 2016, pp. 878–882, Aug. 2016, doi: 10.1109/IS3C.2016.223.
N. Alamatsaz, A. Boustani, M. Jadliwala, and V. Namboodiri, “AgSec: Secure and efficient CDMA-based aggregation for smart metering systems,” 2014 IEEE 11th Consum. Commun. Netw. Conf. CCNC 2014, pp. 489–494, 2014, doi: 10.1109/CCNC.2014.6866615.
A. Dubey, D. Sharma, R. K. Mallik, and S. Mishra, “Modeling and performance analysis of a PLC system in presence of impulsive noise,” IEEE Power Energy Soc. Gen. Meet., vol. 2015-September, Sep. 2015, doi: 10.1109/PESGM.2015.7286624.
S. Prakash, A. Bansal, and S. K. Jha, “Performance analysis of narrowband PLC system under Gaussian Laplacian noise model,” Int. Conf. Electr. Electron. Optim. Tech. ICEEOT 2016, pp. 3597–3600, Nov. 2016, doi: 10.1109/ICEEOT.2016.7755376.
A. Benjebbour, Y. Saito, Y. Kishiyama, A. Li, A. Harada, and T. Nakamura, “Concept and practical considerations of non-orthogonal multiple access (NOMA) for future radio access,” ISPACS 2013 - 2013 Int. Symp. Intell. Signal Process. Commun. Syst., pp. 770–774, 2013, doi: 10.1109/ISPACS.2013.6704653.
Z. M. H. Khalifa S. Al-Mawali, Amin Z. Sadik, “Time-Domain Techniques for iReduction in OFDMBased Power Line Communications: A Comparative Study,” Int. Conf. Commun. Comput. Power.
“An Overview of AI in 3GPP’s RAN Release 18: Enhancing Next-Generation Connectivity? | IEEE Communications Society.” Accessed: May 28, 2024. [Online]. Available: https://www.comsoc.org/publications/ctn/overview-ai-3gpps-ran-release-18-enhancing-next-generation-connectivity
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 50SEA
This work is licensed under a Creative Commons Attribution 4.0 International License.