Particle Filter Based Multi-sensor Fusion for Remaining Service Life Estimation of Energized LV-Aerial Bundled Cables
Keywords:
Diagnosis, Risk Prediction, Predictive maintenance (PdM), Statistical Analysis, Principal Component Analysis, Comparative Analysis, Data-Driven ApproachAbstract
Aerial Bundled Cables (ABC) consist of several wires that contain numerous layers of thermal insulation, which reduces the risk of theft. Nonetheless, there have been regular reports of rapid degeneration of such cables in coastal areas, resulting in multiple unplanned breakdowns. This study employs the data, collected from field-based nondestructive assessment techniques such as ultrasonic listening and thermal imaging. There is a pressing need for advanced tools to estimate the remaining lifespan of ABCs deployed along coastlines. This paper presents a novel approach using a particle filter-based fusion of multiple sensors framework for estimating the Remaining Useful Life (RUL) of in-service ABCs in a severe coastal atmosphere. The use of multi-sensor measurement data improves the accuracy and reliability of the RUL estimation. This will allow electric power distribution companies to plan maintenance and replacement activities well in time. In the reported research work, the f-step prediction scheme under the framework of the Particle filter algorithm is implemented to predict the posterior density function of degradation growth in the cable insulation. The Particle Filter (PF) method performs effectively with nonlinear state transitions and measurement functions, even when addressing non-Gaussian or multidimensional noise variations. The technique also contains a step error calculation approach for determining forecast accuracy when measurement data is missing. The encouraging outcomes of this strategy illustrate its efficacy.
References
A. Fazal, M. Hao, A. S. Vaughan, G. Chen, J. Cao, and H. Wang, “The effect of composition and processing on electric characteristics of XLPE in HVDC cable applications,” 34th Electr. Insul. Conf. EIC 2016, no. June, pp. 440–443, 2016, doi: 10.1109/EIC.2016.7548632.
M. T. Hagh, “21st International Conference on Electricity Distribution Paper 0452 DESIGN AND INSTALLATION OF FIRST 20 kV SPACER CABLE IN IRAN 21 st International Conference on Electricity Distribution Mechanical design,” no. 0452, pp. 6–9, 2011.
C. Landinger, J. W. Mcauliffe, H. Wire, B. Dagenhart, and W. A. Thue, “SAFETY CONSIDERATIONS OF AERIAL SYSTEMS USING INSULATED AND COVERED WIRE AND CABLE,” IEEE Trans. Power Deliv., vol. 12, no. 2, pp. 1012–1016, 1997.
Z. Zhang, P. D. S. Assala, and L. Wu, “Residual life assessment of 110 kV XLPE cable,” Electr. Power Syst. Res., vol. 163, pp. 572–580, 2018, doi: 10.1016/j.epsr.2017.12.027.
M. T. Hagh, “DESIGN AND INSTALLATION OF FIRST 20 kV SPACER CABLE IN IRAN,” no. 0452, pp. 6–9, 2011.
V. T. Morgan, “The Thermal Conductivity of Crosslinked Polyethylene Insulation in Aerial Bundled Cables,” IEEE Trans. Electr. Insul., vol. 26, no. 6, pp. 1153–1158, 1991, doi: 10.1109/14.108153.
D. Danley, “Technical standards for PV/storage/generator microgrids,” GHTC 2017 - IEEE Glob. Humanit. Technol. Conf. Proc., vol. 2017-Janua, pp. 1–6, 2017, doi: 10.1109/GHTC.2017.8239303.
M. Omidiora and M. Lehtonen, “Mitigation of lightning flashover from tree to medium voltage aerial cable using shield wire,” IEEE Trans. Power Deliv., vol. 32, no. 4, pp. 1924–1934, 2017, doi: 10.1109/TPWRD.2016.2585104.
W. Choo, G. Chen, and S. G. Swingler, “Electric field in polymeric cable due to space charge accumulation under DC and temperature gradient,” IEEE Trans. Dielectr. Electr. Insul., vol. 18, no. 2, pp. 596–606, 2011, doi: 10.1109/TDEI.2011.5739466.
G. C. Montanari, G. Mazzanti, and L. Simoni, “Progress in electrothermal life modeling of electrical insulation during the last decades,” IEEE Trans. Dielectr. Electr. Insul., vol. 9, no. 5, pp. 730–745, 2002, doi: 10.1109/TDEI.2002.1038660.
L. Boukezzi, S. Rondot, O. Jbara, and A. Boubakeur, “Study of thermal aging effects on the conduction and trapping of charges in XLPE cable insulations under electron beam irradiation,” Radiat. Phys. Chem., vol. 149, pp. 110–117, 2018, doi: 10.1016/j.radphyschem.2018.04.006.
Y. Bicen, “Trend adjusted lifetime monitoring of underground power cable,” Electr. Power Syst. Res., vol. 143, pp. 189–196, 2017, doi: 10.1016/j.epsr.2016.10.045.
M. A. Shahid, T. M. Khan, T. Zafar, M. F. Hashmi, and M. Imran, “Health diagnosis scheme for in-service low voltage Aerial Bundled Cables using super-heterodyned airborne Ultrasonic testing,” Electr. Power Syst. Res., vol. 180, no. November 2019, p. 106162, 2020, doi: 10.1016/j.epsr.2019.106162.
T. Zafar, T. Khan, A. Alam, W. Bin Yousuf, M. A. Shahid, and F. Hashmi, “Prognosis study of live aerial bundled cables in coastal areas using historical super-heterodyne ultrasonic listening data,” Electr. Power Syst. Res., vol. 189, no. June, p. 106591, 2020, doi: 10.1016/j.epsr.2020.106591.
M. Hassan, Khan, T. M., Abbas, S., Shahid, M. A., Tariq, S. T., and F. Amir, “Hassan, M., Khan, T. M., Abbas, S., Shahid, M. A., Tariq, S. T., Amir, F. (2020). ‘ Degradation assessment of in-service Aerial Bundled Cables in coastal areas leading to Prognosis using Infrared Thermography ’ . Manuscript submitted for publication.”.
Z. Xu et al., “Application of temperature field modeling in monitoring of optic-electric composite submarine cable with insulation degradation,” Meas. J. Int. Meas. Confed., vol. 133, pp. 479–494, 2019, doi: 10.1016/j.measurement.2018.10.028.
L. Boukezzi, L. Bessissa, A. Boubakeur, and D. Mahi, “Neural networks and fuzzy logic approaches to predict mechanical properties of XLPE insulation cables under thermal aging,” Neural Comput. Appl., vol. 28, no. 11, pp. 3557–3570, 2017, doi: 10.1007/s00521-016-2259-y.
A. Levet, J. Colombani, and L. Duponchel, “Studying radiolytic ageing of nuclear power plant electric cables with FTIR spectroscopy,” Talanta, vol. 172, no. March, pp. 139–146, 2017, doi: 10.1016/j.talanta.2017.05.046.
Y. Kemari, A. Mekhaldi, and M. Teguar, “Experimental investigation and signal processing techniques for degradation assessment of XLPE and PVC/B materials under thermal aging,” IEEE Trans. Dielectr. Electr. Insul., vol. 24, no. 4, pp. 2559–2569, 2017, doi: 10.1109/TDEI.2017.006399.
P. R. Muniz, J. L. Teixeira, N. Q. Santos, P. L. Q. Magioni, S. P. N. Cani, and J. F. Fardin, “Prospects of life estimation of low voltage electrical cables insulated by PVC by emissivity measurement,” IEEE Trans. Dielectr. Electr. Insul., vol. 24, no. 6, pp. 3951–3958, 2017, doi: 10.1109/TDEI.2017.006868.
T. Khan, P. Ramuhalli, and S. C. Dass, “Particle-filter-based multisensor fusion for solving low-frequency electromagnetic NDE inverse problems,” IEEE Transactions on Instrumentation and Measurement, vol. 60, no. 6. pp. 2142–2153, 2011. doi: 10.1109/TIM.2011.2117170.
J. Dion, M. Kumar, and P. Ramuhalli, “Multi-sensor data fusion for high-resolution material characterization,” AIP Conf. Proc., vol. 894, no. March, pp. 1189–1196, 2007, doi: 10.1063/1.2718101.
G. Simone and F. C. Morabito, “NDT image fusion using eddy current and ultrasonic data,” COMPEL - The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 20, no. 3. pp. 857–868, 2001. doi: 10.1108/03321640110394030.
Z. Liu, D. S. Forsyth, J. P. Komorowski, K. Hanasaki, and T. Kirubarajan, “Survey: State of the art in NDE data fusion techniques,” IEEE Transactions on Instrumentation and Measurement, vol. 56, no. 6. pp. 2435–2451, 2007. doi: 10.1109/TIM.2007.908139.
L. Li, K. Tsukada, K. Hanasaki, and Z. Liu, “Fusion of multi-frequency eddy current signals-by using wavelet analysis method,” Proc. 5th Int. Conf. Inf. Fusion, FUSION 2002, vol. 1, no. February 2002, pp. 108–113, 2002, doi: 10.1109/ICIF.2002.1021138.
X. E. Gros, Z. Liu, K. Tsukada, and K. Hanasaki, “Experimenting with pixel-level NDT data fusion techniques,” IEEE Trans. Instrum. Meas., vol. 49, no. 5, pp. 1083–1090, 2000, doi: 10.1109/19.872934.
T. Zafar, T. Mairaj, A. Alam, and H. Rasheed, “Hybrid resampling scheme for particle filter- based inversion,” IET Sci. Meas. Technol., vol. PP, no. 99, pp. 1–11, 2020, doi: 10.1049/iet-smt.2018.5531.
M. S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, “A Tutorial on Particle Filters for Online Nonlinear / Non-Gaussian Bayesian Tracking,” IEEE Trans. Signal Process., vol. 50, no. 2, pp. 174–188, 2002.
T. Khan and P. Ramuhalli, “A recursive bayesian estimation method for solving electromagnetic nondestructive evaluation inverse problems,” IEEE Transactions on Magnetics, vol. 44, no. 7. pp. 1845–1855, 2008. doi: 10.1109/TMAG.2008.921842.
B. Ristic, A. Sanjeev, and G. Neil, Beyond the Kalman Filter: Particle Filters for Tracking Application, Illustrate., no. 5. Boston: Artech House Publishers, 2004. doi: 10.1007/s13398-014-0173-7.2.
T. Khan and P. Ramuhalli, “Sequential monte carlo methods for electromagnetic NDE inverse problems-evaluation and comparison of measurement models,” IEEE Trans. Magn., vol. 45, no. 3, pp. 1566–1569, 2009, doi: 10.1109/TMAG.2009.2012744.
Z. Chen and Z. Chen, “Bayesian filtering: from Kalman filters to particle filters, and beyond,” Statistics (Ber)., vol. 182, no. 1, 2003, doi: 10.1080/02331880309257.
M. A. Shahid, T. M. Khan, T. Zafar, F. Hashmi, and F. Amir, “Novel Health Diagnostics schemes analyzing corona discharge of operational Aerial Bundled Cables in coastal regions,” IEEE Trans. Power Deliv., vol. 8977, no. c, pp. 1–1, 2020, doi: 10.1109/tpwrd.2020.2974751.
R. Valles-Novo, J. De Jesus Rangel-Magdaleno, J. M. Ramirez-Cortes, H. Peregrina-Barreto, and R. Morales-Caporal, “Empirical mode decomposition analysis for broken-bar detection on squirrel cage induction motors,” IEEE Trans. Instrum. Meas., vol. 64, no. 5, pp. 1118–1128, 2015, doi: 10.1109/TIM.2014.2373513.
M. Park, D. Kim, and H. S. Oh, “Quantile-Based Empirical Mode Decomposition: An Efficient Way to Decompose Noisy Signals,” IEEE Trans. Instrum. Meas., vol. 64, no. 7, pp. 1802–1813, 2015, doi: 10.1109/TIM.2014.2381355.
I. Ullah et al., “Predictive maintenance of power substation equipment by infrared thermography using a machine-learning approach,” Energies, vol. 10, no. 12, 2017, doi: 10.3390/en10121987.
M. A. Mendes, L. G. R. Tonini, P. R. Muniz, and C. B. Donadel, “Thermographic analysis of parallelly cables: A method to avoid misdiagnosis,” Appl. Therm. Eng., vol. 104, pp. 231–236, 2016, doi: 10.1016/j.applthermaleng.2016.05.072.
M. S. Jadin and S. Taib, “Recent progress in diagnosing the reliability of electrical equipment by using infrared thermography,” Infrared Phys. Technol., vol. 55, no. 4, pp. 236–245, 2012, doi: 10.1016/j.infrared.2012.03.002.
Z. A. Jaffery and A. K. Dubey, “Design of early fault detection technique for electrical assets using infrared thermograms,” Int. J. Electr. Power Energy Syst., vol. 63, pp. 753–759, 2014, doi: 10.1016/j.ijepes.2014.06.049.
A. Duarte et al., “Segmentation Algorithms for Thermal Images,” Procedia Technol., vol. 16, pp. 1560–1569, 2014, doi: 10.1016/j.protcy.2014.10.178.
N. Zhu, G. Wang, G. Yang, and W. Dai, “A fast 2D otsu thresholding algorithm based on improved histogram,” Proc. 2009 Chinese Conf. Pattern Recognition, CCPR 2009, 1st CJK Jt. Work. Pattern Recognition, CJKPR, pp. 319–323, 2009, doi: 10.1109/CCPR.2009.5344078.
G. E. Sujji, Y. V. S. Lakshmi, and G. W. Jiji, “MRI Brain Image Segmentation based on Thresholding,” Int. J. Adv. Comput. Res., vol. 3, no. 8, pp. 1–5, 2013.
A. Attig and P. Perner, “The Problem of Normalization and a Normalized Similarity Measure by Online Data,” Trans. Case-Based Reason., vol. 4, no. 1, pp. 3–17, 2011.
T. Khan, L. Udpa, and S. Udpa, “Particle filter based prognosis study for predicting remaining useful life of steam generator tubing,” 2011 IEEE Int. Conf. Progn. Heal. Manag. PHM 2011 - Conf. Proc., 2011, doi: 10.1109/ICPHM.2011.6024323.
A. K. Dey and D. Kundu, “Discriminating among the log-normal, weibull, and generalized exponential distributions,” IEEE Trans. Reliab., vol. 58, no. 3, pp. 416–424, 2009, doi: 10.1109/TR.2009.2019494.
W. Bin Yousuf, T. Khan, and T. Ali, “Prognostic Algorithms for Flaw Growth Prediction in an Aircraft Wing,” IEEE Transactions on Reliability, vol. 66, no. 2. pp. 478–486, 2017. doi: 10.1109/TR.2017.2676722.
M. ul Hassan, F. Danish, W. Bin Yousuf, and T. M. R. Khan, “Comparison of different life distribution schemes for prediction of crack propagation in an aircraft wing,” Eng. Fail. Anal., vol. 96, no. November 2017, pp. 241–254, 2019, doi: 10.1016/j.engfailanal.2018.10.010.
H. Abdi and L. J. Williams, “Principal component analysis,” Wiley Interdiscip. Rev. Comput. Stat., vol. 2, no. 4, pp. 433–459, 2010, doi: 10.1002/wics.101.
A. Tefas and I. Pitas, “Principal component analysis,” Chemom. Intell. Lab. Syst., vol. 2, pp. 37–52, 1987, doi: 10.2307/1270093.
J. M. Corchado, S. Sun, G. Villarrubia, T. Li, and J. Bajo, “Resampling methods for particle filtering: identical distribution, a new method, and comparable study,” Frontiers of Information Technology & Electronic Engineering, vol. 16, no. 11. pp. 969–984, 2015. doi: 10.1631/fitee.1500199.
M. Yan et al., Iterative algorithms for electromagnetic NDE signal inversion. Amsterdam, The Netherlands: IOS Press, 1998.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 50SEA
This work is licensed under a Creative Commons Attribution 4.0 International License.