Algorithm-Driven Optimization of ZnCo₂O₄@CuO Core-Shell Architectures for High-Performance Supercapacitors

Authors

  • Muhammad Shahzad Department of Physics Government College University Lahore
  • Syed Usman Tanveer Department of Space Science, Punjab University

Keywords:

Electrochemical Performance, Spinel Metal Oxide, Capacitance, Electrical Conductivity

Abstract

This study investigates the electrochemical performance of ZnCo₂O₄@CuO core–shell nanostructures as advanced electrode materials for supercapacitors. ZnCo₂O₄, a spinel metal oxide, offers high theoretical capacitance and environmental compatibility but suffers from low electrical conductivity and structural instability. To address these limitations, we synthesized ZnCo₂O₄@CuO composites using a hydrothermal method, leveraging CuO's excellent electrical conductivity and chemical stability to enhance the core material's properties. Comprehensive characterization confirmed the formation of a hierarchical core–shell structure with improved surface area and uniform elemental distribution. Electrochemical testing revealed that ZnCo₂O₄@CuO electrodes exhibited significantly enhanced specific capacitance (882 F g⁻¹ at 4 mA cm⁻²), superior rate capability, and excellent cycling stability, retaining ~90.2% of their initial capacitance after 4000 cycles. An asymmetric supercapacitor device assembled with these electrodes delivered a maximum energy density of 46.66 Wh kg⁻¹ and power density of 800 W kg⁻¹. These findings demonstrate the potential of ZnCo₂O₄@CuO core–shell nanostructures as high-performance, durable, and cost-effective materials for next-generation energy storage applications.

References

B. Q. Ma, Q. Tao, K. Han, "Carbon-based materials as supercapacitor electrodes," Dalton Trans., vol. 50, pp. 8179–8188, 2021, doi: 10.1039/D1DT00866H.

X. Lu, C. Shen, Z. Zhang, E. Barrios, L. Zhai, "Facile preparation of nanoporous C60/P3HT thin films from PLA-b-C60-b-P3HT triblock copolymers," ACS Appl. Mater. Interfaces, vol. 10, pp. 4041–4049, 2018, doi: 10.1021/acsami.7b12997.

J. Xu, L. Wang, "Research Progress in MnO2-Carbon Based Supercapacitor Electrode Materials," Sci. Rep., vol. 9, pp. 1–11, 2019, doi: 10.1038/s41598-019-48931-6.

W. Dang, X. Tang, W. Wang, Y. Yang, X. Li, L. Huang, Y. Zhang, "Nitrogen-doped porous carbons through KOH activation with superior performance in supercapacitors," Dalton Trans., vol. 49, pp. 10994–11004, 2020, doi: 10.1039/D0DT02278K.

Q. Wang, X. Qin, P. Jiang, J. Dai, W. Li, H. Gao, "High-performance supercapacitors with self-doped porous carbon derived from agricultural waste," Mater. Res. Express, vol. 5, p. 035503, 2018, doi: 10.1088/2053-1591/aab0eb.

K. Qiu, M. Lu, Y. Luo, X. Du, "Synergistic design of a N, O co-doped honeycomb carbon electrode and an ionogel electrolyte enabling all-solid-state supercapacitors with an ultrahigh energy density," J. Mater. Chem. A, vol. 5, pp. 5820–5828, 2017, doi: 10.1039/C7TA00506G.

F. Yang, K. Zhang, W. Li, K. Xu, "Design of high-energy supercapacitors based on nitrogen-doped carbon materials," J. Colloid Interface Sci., vol. 556, pp. 386–391, 2019, doi: 10.1016/j.jcis.2019.08.078.

L. Jiang, X. Zhong, J. Liang, J. Zhang, H. Wang, G. Zeng, "Research on supercapacitor electrodes," J. Power Sources, vol. 331, pp. 408–425, 2016, doi: 10.1016/j.jpowsour.2016.09.054.

J. Zhao, Z. Li, M. Zhang, A. Meng, Q. Li, "Advanced nanomaterials for supercapacitors," ACS Sustainable Chem. Eng., vol. 4, pp. 3598–3608, 2016, doi: 10.1021/acssuschemeng.6b00697.

B. Cheng, W. Zhang, M. Yang, Y. Zhang, F. Meng, "Electrochemical properties of cerium-doped Cr2O3 supercapacitors," Ceram. Int., vol. 45, pp. 20451–20457, 2019, doi: 10.1016/j.ceramint.2019.07.022.

T. Yi, Y. Li, J. Wu, Y. Xie, S. Luo, "Electrochemical performance of N-doped porous carbons for supercapacitors," Electrochim. Acta., vol. 284, pp. 128–141, 2018, doi: 10.1016/j.electacta.2018.07.156.

Z. Sun, W. Ai, J. Liu, X. Qi, Y. Wang, J. Zhu, H. Zhang, T. Yu, "High-performance supercapacitors from coffee bean-derived phosphorus-rich carbons," Nanoscale, vol. 6, pp. 6563–6568, 2014, doi: 10.1039/C4NR00533C.

B. Mandal, M. R. Das, P. Mitra, "Electrochemical storage in carbon materials for supercapacitors," J. Alloys Compd., vol. 784, pp. 877–886, 2019, doi: 10.1016/j.jallcom.2019.01.127.

Y. Li, Y. Zheng, J. Yao, J. Xiao, J. Yang, S. Xiao, "RSC Adv. on supercapacitor applications," RSC Adv., vol. 7, pp. 31287–31297, 2017, doi: 10.1039/C7RA05373H.

R. Prasad, P. Singh, "High performance supercapacitors," Catal. Sci. Technol., vol. 3, pp. 3223–3233, 2013, doi: 10.1039/C3CY00537B.

C. Yuan, X. Zhang, L. Su, B. Gao, L. Shen, "Advanced porous carbons for supercapacitors," J. Mater. Chem., vol. 19, pp. 5772–5777, 2009, doi: 10.1039/B902221J.

Q. Ouyang, Z. Lei, Q. Li, M. Li, C. Yang, "High-performance electrode materials for supercapacitors," J. Mater. Chem. A, vol. 9, pp. 14466–14476, 2021, doi: 10.1039/D1TA00710F.

T. F. Yi, J. Mei, B. Guan, P. Cui, S. Luo, Y. Xie, Y. Liu, "High energy-density supercapacitors from nanomaterials," Ceram. Int., vol. 46, pp. 421–429, 2020, doi: 10.1016/j.ceramint.2019.08.278.

G. P. Kamble, A. A. Kashale, A. S. Rasal, S. A. Mane, R. A. Chavan, J. Y. Chang, Y. C. Ling, S. S. Kolekar, A. V. Ghule, "Synthesis and characterization of advanced carbon materials for supercapacitors," RSC Adv., vol. 11, pp. 3666–3672, 2021, doi: 10.1039/D0RA09524A.

C. Huang, C. Hao, Z. Ye, S. Zhou, X. Wang, L. Zhu, J. Wu, "Supercapacitor performance from coffee bean-derived phosphorus-rich carbons," Nanoscale, vol. 11, pp. 10114–10128, 2019, doi: 10.1039/C9NR02230A.

L. Zhu, C. Hao, X. Wang, Y. Guo, "Sustainable carbon electrodes for supercapacitors," ACS Sustainable Chem. Eng., vol. 8, pp. 11618–11629, 2020, doi: 10.1021/acssuschemeng.0c02916.

K. Song, W. Ai, Y. Zhang, Y. Zeng, Y. Yu, H. Qiao, Z. Liu, X. Shen, X. Hu, "High-energy density supercapacitors based on N-doped carbon," J. Mater. Chem. A, vol. 9, pp. 3007–3017, 2021, doi: 10.1039/D0TA09195B.

Downloads

Published

2021-12-31

How to Cite

Muhammad Shahzad, & Syed Usman Tanveer. (2021). Algorithm-Driven Optimization of ZnCo₂O₄@CuO Core-Shell Architectures for High-Performance Supercapacitors. International Journal of Innovations in Science & Technology, 3(4), 228–242. Retrieved from https://journal.50sea.com/index.php/IJIST/article/view/1163