Energy Harvesting Implementation in WBAN Routing Protocols with Multi-Relay Co-Operation

Authors

  • Yasir Ali Rasheed Department of Computer Science, Iqra National University
  • Sheeraz Ahmed Department of Computer Science, Iqra National University
  • Nazia Azim Department of Computer Science Abdul Wali Khan University Mardan, Pakistan
  • Firdous Ayub Department of Computer Science, Women's University, Swabi, Pakistan
  • Muhammad Adil Department of Computer Science, Iqra National University
  • Asif Khan Government of KP Nowshera, Pakistan

Keywords:

Cooperative, Routing, Energy Harvesting, Consumption

Abstract

Mostly simulations are used to evaluate the performance of Wireless Body Area Networks (WBANs). The recent researches are focused on channel modelling and energy conservation at the Network/MAC layer. Normally, collaborative learning, path loss, and energy harvesting are ignored in these schemes of studies. In this research, we will try to use an Energy Harvesting (EH) mechanism to recharge the batteries instead of replacing them time and again. In contrast with the existing studies, the proposed scheme considers collaborative learning and energy harvesting. Cost functions are used to identify the most feasible wireless route from a given node to the sink while sharing each other’s distance and residual energy information. The human body temperature (thermal energy) and the pumping of the heart can be used for energy harvesting within the body, while solar energy can be used for energy harvesting of nodes on the human body.

References

A. Roshini and K. V. D. Kiran, “Hierarchical energy efficient secure routing protocol for optimal route selection in wireless body area networks,” Int. J. Intell. Networks, vol. 4, pp. 19–28, 2023, doi: https://doi.org/10.1016/j.ijin.2022.11.006.

D. C.-F. Antonio Molina-Pico, “Forest Monitoring and Wildland Early Fire Detection by a Hierarchical Wireless Sensor Network,” J. Sensors, 2016, doi: https://doi.org/10.1155/2016/8325845.

É. L. Souza, E. F. Nakamura, and R. W. Pazzi, “Target Tracking for Sensor Networks,” ACM Comput. Surv., vol. 49, no. 2, Jun. 2016, doi: 10.1145/2938639.

L. Agarwal, G. Dixit, A. K. Jain, K. K. Pandey, and A. Khare, “Energy Efficient Pollution Monitoring System Using Deterministic Wireless Sensor Networks,” Adv. Intell. Syst. Comput., vol. 438, pp. 301–309, 2016, doi: 10.1007/978-981-10-0767-5_33.

K. S. T. S. Dharmaraja, Resham Vinayak, “Reliability and survivability of vehicular ad hoc networks: An analytical approach,” Reliab. Eng. Syst. Saf., vol. 153, pp. 28–38, 2016, doi: https://doi.org/10.1016/j.ress.2016.04.004.

C. C. Amos, A. Rahman, and J. M. Gathenya, “Economic Analysis and Feasibility of Rainwater Harvesting Systems in Urban and Peri-Urban Environments: A Review of the Global Situation with a Special Focus on Australia and Kenya,” Water 2016, Vol. 8, Page 149, vol. 8, no. 4, p. 149, Apr. 2016, doi: 10.3390/W8040149.

S. Sur et al., “Atechnical study on wireless body area network with its application,” 2018 IEEE 8th Annu. Comput. Commun. Work. Conf. CCWC 2018, vol. 2018-January, pp. 867–873, Feb. 2018, doi: 10.1109/CCWC.2018.8301637.

I. Karthiga, S. Sankar, and P. Dhivahar, “A study on routing protocols in wireless body area networks and its suitability for m-Health applications,” 2015 Int. Conf. Commun. Signal Process. ICCSP 2015, pp. 1064–1069, Nov. 2015, doi: 10.1109/ICCSP.2015.7322664.

B. Shunmugapriya and B. Paramasivan, “Fuzzy Based Relay Node Selection for Achieving Efficient Energy and Reliability in Wireless Body Area Network,” Wirel. Pers. Commun., vol. 122, no. 3, pp. 2723–2743, Feb. 2022, doi: 10.1007/S11277-021-09027-5/METRICS.

S. Singh and D. Prasad, “Wireless body area network (WBAN): A review of schemes and protocols,” Mater. Today Proceedingsding, vol. 49, no. 8, pp. 3488–3496, 2022, doi: https://doi.org/10.1016/j.matpr.2021.05.564.

K. G. D. and S. P. Panda, “Challenges in Wireless Body Area Network-A survey,” Optim. Reliab. Inf. Technol., pp. 204–207, 2014.

K. Rojpaisarnkit, “Factors Influencing Well-Being in the Elderly Living in the Rural Areas of Eastern Thailand,” J. Behav. Sci., vol. 11, no. 2, 2016, [Online]. Available: https://so06.tci-thaijo.org/index.php/IJBS/article/view/63277

E. F. Hagar Mahmoud, “A Survey on Thermal Aware Routing Protocols in Wireless Body Area Network,” IJARCCE, vol. 8, no. 9, pp. 42–49, 2019, doi: 10.17148/IJARCCE.2019.8908.

Z. Ullah, I. Ahmed, K. Razzaq, M. K. Naseer, and N. Ahmed, “DSCB: Dual sink approach using clustering in body area network,” Peer-to-Peer Netw. Appl., vol. 12, no. 2, pp. 357–370, Mar. 2019, doi: 10.1007/S12083-017-0587-Z/METRICS.

B. J. Mohammad Ghamari, “A Survey on Wireless Body Area Networks for eHealthcare Systems in Residential Environments,” Sensors, vol. 16, no. 6, p. 831, 2016, doi: https://doi.org/10.3390/s16060831.

E. K. I. H. Ahmed Z.A. Zaki, “Design and Modeling of Ultra-Compact Wideband Implantable Antenna for Wireless ISM Band,” Bioengineering, vol. 10, no. 2, 2023, doi: https://doi.org/10.3390/bioengineering10020216.

G. R. Tsouri, S. R. Zambito, and J. Venkataraman, “On the Benefits of Creeping Wave Antennas in Reducing Interference between Neighboring Wireless Body Area Networks,” IEEE Trans. Biomed. Circuits Syst., vol. 11, no. 1, pp. 153–160, Feb. 2017, doi: 10.1109/TBCAS.2016.2539281.

M. N. Vadlamudi and M. A. Hussian, “An Intelligent Energy-Efficient Routing Protocol for Wearable Body Area Networks,” Smart Innov. Syst. Technol., vol. 315, pp. 249–257, 2023, doi: 10.1007/978-981-19-4162-7_24.

R. Ramya, G. Saravanakumar, and S. Ravi, “Energy Harvesting in Wireless Sensor Networks,” Adv. Intell. Syst. Comput., vol. 394, pp. 841–853, 2016, doi: 10.1007/978-81-322-2656-7_76.

S. Z. Faisal Karim Shaikh, “Energy harvesting in wireless sensor networks: A comprehensive review,” Renew. Sustain. Energy Rev., vol. 55, pp. 1041–1054, 2016, doi: https://doi.org/10.1016/j.rser.2015.11.010.

S. Movassaghi, M. Abolhasan, J. Lipman, D. Smith, and A. Jamalipour, “Wireless body area networks: A survey,” IEEE Commun. Surv. Tutorials, vol. 16, no. 3, pp. 1658–1686, 2014, doi: 10.1109/SURV.2013.121313.00064.

H. Chebbo, S. Abedi, T. A. Lamahewa, D. B. Smith, D. Miniutti, and L. Hanlen, “Reliable body area networks using relays: Restricted tree topology,” 2012 Int. Conf. Comput. Netw. Commun. ICNC’12, pp. 82–88, 2012, doi: 10.1109/ICCNC.2012.6167540.

N. H. Nadeem Javaid, Ashfaq Ahmad, Qaisar Nadeem, Muhammad Imran, “iM-SIMPLE: iMproved stable increased-throughput multi-hop link efficient routing protocol for Wireless Body Area Networks,” Comput. Human Behav., vol. 51, pp. 1003–1011, 2015, doi: https://doi.org/10.1016/j.chb.2014.10.005.

Q. Nadeem, N. Javaid, S. N. Mohammad, M. Y. Khan, S. Sarfraz, and M. Gull, “SIMPLE: Stable increased-throughput multi-hop protocol for link efficiency in Wireless Body Area Networks,” Proc. - 2013 8th Int. Conf. Broadband, Wirel. Comput. Commun. Appl. BWCCA 2013, pp. 221–226, 2013, doi: 10.1109/BWCCA.2013.42.

A. Ahmad, N. Javaid, U. Qasim, M. Ishfaq, Z. A. Khan, and T. A. Alghamdi, “RE-ATTEMPT: A new energy-efficient routing protocol for wireless body area sensor networks,” Int. J. Distrib. Sens. Networks, vol. 2014, 2014, doi: 10.1155/2014/464010.

A. A. P. W. Liang Liang, Yu Ge, Gang Feng, Wei Ni, “A low overhead tree-based energy-efficient routing scheme for multi-hop wireless body area networks,” Comput. Networks, vol. 70, pp. 45–58, 2014, doi: https://doi.org/10.1016/j.comnet.2014.05.004.

S. Ahmed et al., “Co-LAEEBA: Cooperative link aware and energy efficient protocol for wireless body area networks,” Comput. Human Behav., vol. 51, pp. 1205–1215, 2015, doi: 10.1016/j.chb.2014.12.051.

J. M. T. A. Nedal Ababneh, “Adaptive routing for multihop IEEE 802.15. 6 Wireless Body Area Networks,” Software, Telecommunications and Computer Networks (SoftCOM). Accessed: Oct. 27, 2025. [Online]. Available: https://www.researchgate.net/publication/260123817_Adaptive_routing_for_multihop_IEEE_80215_6_Wireless_Body_Area_Networks

Z. A. Khan, S. Sivakumar, W. Phillips, and N. Aslam, “A new patient monitoring framework and Energy-aware Peering Routing Protocol (EPR) for Body Area Network communication,” J. Ambient Intell. Humaniz. Comput., vol. 5, no. 3, pp. 409–423, Jul. 2014, doi: 10.1007/S12652-013-0195-6/METRICS.

S. Adhikary, S. Choudhury, and S. Chattopadhyay, “A new Routing protocol for WBAN to enhance energy consumption and network lifetime,” ACM Int. Conf. Proceeding Ser., vol. 04-07-January-2016, Jan. 2016, doi: 10.1145/2833312.2849560.

M. M. Sahndhu, N. Javaid, M. Imran, M. Guizani, Z. A. Khan, and U. Qasim, “BEC: A novel routing protocol for balanced energy consumption in Wireless Body Area Networks,” IWCMC 2015 - 11th Int. Wirel. Commun. Mob. Comput. Conf., pp. 653–658, Oct. 2015, doi: 10.1109/IWCMC.2015.7289160.

Y. C. B. Zeinab Shahbazi, “Towards a Secure Thermal-Energy Aware Routing Protocol in Wireless Body Area Network Based on Blockchain Technology,” Sensors, vol. 20, no. 12, p. 3604, 2020, doi: https://doi.org/10.3390/s20123604.

A. Maskooki, C. B. Soh, E. Gunawan, and K. S. Low, “Adaptive routing for dynamic on-body wireless sensor networks,” IEEE J. Biomed. Heal. Informatics, vol. 19, no. 2, pp. 549–558, Mar. 2015, doi: 10.1109/JBHI.2014.2313343.

O. Smail, A. Kerrar, Y. Zetili, and B. Cousin, “ESR: Energy aware and stable routing protocol for WBAN networks,” 2016 Int. Wirel. Commun. Mob. Comput. Conf. IWCMC 2016, pp. 452–457, Sep. 2016, doi: 10.1109/IWCMC.2016.7577100.

K. Singh and R. K. Singh, “An energy efficient fuzzy based adaptive routing protocol for Wireless Body Area Network,” 2015 IEEE UP Sect. Conf. Electr. Comput. Electron. UPCON 2015, Apr. 2016, doi: 10.1109/UPCON.2015.7456680.

S. Talha, R. Ahmad, and A. K. Kiani, “Priority based energy aware (PEA) routing protocol for WBANs,” IEEE Veh. Technol. Conf., 2015, doi: 10.1109/VTCFALL.2015.7391095.

Z. Wei, S. Gang, and C. Yong, “An improved WBAN route protocol based on DSR,” Proc. 2015 IEEE Adv. Inf. Technol. Electron. Autom. Control Conf. IAEAC 2015, pp. 1142–1145, Mar. 2016, doi: 10.1109/IAEAC.2015.7428738.

C. R. P. & P. Bojja, “A hybrid energy-efficient routing protocol for wireless body area networks using ultra-low-power transceivers for eHealth care systems,” SN Appl. Sci., vol. 2, no. 2114, 2020, doi: https://doi.org/10.1007/s42452-020-03900-x.

Ijcse Publication, “Cost Based Energy Efficient Routing Algorithm for Wireless Body Area Networks ,” International Journal of Computer Sciences and Engineering. Accessed: Oct. 27, 2025. [Online]. Available: https://www.researchgate.net/publication/301814105_Cost_Based_Energy_Efficient_Routing_Algorithm_for_Wireless_Body_Area_Networks

S. B. and M. K. I. R. R. Singla, N. Kaur, D. Koundal, S. A. Lashari, “Optimized Energy Efficient Secure Routing Protocol for Wireless Body Area Network,” IEEE Access, vol. 9, pp. 116745–116759, 2021, doi: 10.1109/ACCESS.2021.3105600.

S. D. Sree Nidhi SRINIVASAN, Pavithra SURESH KUMAR, “Performance Analysis of Relay Model-based Energy Harvesting in CR-WBAN,” RADIOENGINEERING, vol. 34, no. 2, 2025, doi: 10.13164/re.2025.0353.

T. K. and K. Ishibashi, “ZEN-MAC: Zero Excess Node MAC for Multihop Sensor Networks With Energy Harvesting,” IEEE Internet Things J., vol. 12, no. 14, pp. 27818–27834, 2025, doi: 10.1109/JIOT.2025.3564897.

Downloads

Published

2025-11-03

How to Cite

Yasir Ali Rasheed, Ahmed, S., Azim, N., Firdous Ayub, Adil, M., & Khan, A. (2025). Energy Harvesting Implementation in WBAN Routing Protocols with Multi-Relay Co-Operation. International Journal of Innovations in Science & Technology, 7(4), 2660–2678. Retrieved from https://journal.50sea.com/index.php/IJIST/article/view/1624