Investigating Deep Learning Methods for Detecting Lung Adenocarcinoma on the TCIA Dataset

Authors

  • Rafia Jabbar Memon Mehran University of Engineering and Technology.
  • Sammer Zai Mehran University of Engineering and Technology.
  • Moazzam Jawaid Mehran University of Engineering and Technology.
  • M Ahsan Mehran University of Engineering and Technology.

Keywords:

Adenocarcinoma, Lung Cancer, Convolutional Neural Network, Accuracy, Detection

Abstract

Lung cancer, one of the deadliest diseases worldwide, can be treated, where the survival rates increase with early detection and treatment. CT scans are the most advanced imaging modality in clinical practices. Interpreting and identifying cancer from CT scan images can be difficult for doctors. Thus, automated detection helps doctors to identify malignant cells. A variety of techniques including deep learning and image processing have been extensively examined and evaluated. The objective of this study is to evaluate different transfer learning models through the optimization of certain variables including learning rate (LR), batch size (BS), and epochs. Finally, this study presents an enhanced model that achieves improved accuracy and faster processing times. Three models, namely VGG16, ResNet-50, and CNN Sequential Model, have undergone evaluation by changing parameters like learning rate, batch size, and epochs and after extensive experiments, it has been found that among these three models, the CNN Sequential model is working best with an accuracy of 94.1% and processing time of 1620 seconds. However, VGG16 and ResNet50 have 95.0% and 93% accuracies along with processing times of 5865 seconds and 9460 seconds, respectively.

References

“What Is Cancer? - NCI.” Accessed: Dec. 18, 2023. [Online]. Available: https://www.cancer.gov/about-cancer/understanding/what-is-cancer

“Lung Cancer Facts 2023 - Lung Cancer Research Foundation.” Accessed: Dec. 18, 2023. [Online]. Available: https://www.lungcancerresearchfoundation.org/lung-cancer-facts/

“Automatic nodule detection for lung cancer in CT images: A review. Computers in Biology and Medicine | 10.1016/j.compbiomed.2018.10.033.” Accessed: Dec. 18, 2023. [Online]. Available: https://sci-hub.se/10.1016/j.compbiomed.2018.10.033

S. Makaju, P. W. C. Prasad, A. Alsadoon, A. K. Singh, and A. Elchouemi, “Lung Cancer Detection using CT Scan Images,” Procedia Comput. Sci., vol. 125, pp. 107–114, Jan. 2018, doi: 10.1016/J.PROCS.2017.12.016.

L. Wang, “Deep Learning Techniques to Diagnose Lung Cancer,” Cancers 2022, Vol. 14, Page 5569, vol. 14, no. 22, p. 5569, Nov. 2022, doi: 10.3390/CANCERS14225569.

S. S. Bhimji and J. M. Wallen, “Lung Adenocarcinoma,” StatPearls, Jun. 2023, Accessed: Dec. 18, 2023. [Online]. Available: https://www.ncbi.nlm.nih.gov/books/NBK519578/

Y. Feng, P. Hao, P. Zhang, X. Liu, F. Wu, and H. Wang, “Supervoxel based weakly-supervised multi-level 3D CNNs for lung nodule detection and segmentation,” J. Ambient Intell. Humaniz. Comput., pp. 1–11, Mar. 2019, doi: 10.1007/S12652-018-01170-5/METRICS.

S. Balannolla, A. Kousar Nikhath, and S. Yeruva, “Detection and Classification of Lung Carcinoma using CT scans,” J. Phys. Conf. Ser., vol. 2286, no. 1, p. 012011, Jul. 2022, doi: 10.1088/1742-6596/2286/1/012011.

P. Tripathi, S. Tyagi, and M. Nath, “A Comparative Analysis of Segmentation Techniques for Lung Cancer Detection,” Pattern Recognit. Image Anal., vol. 29, no. 1, pp. 167–173, Jan. 2019, doi: 10.1134/S105466181901019X/METRICS.

A. Kumar, M. Fulham, D. Feng, and J. Kim, “Co-Learning Feature Fusion Maps from PET-CT Images of Lung Cancer,” IEEE Trans. Med. Imaging, vol. 39, no. 1, pp. 204–217, Jan. 2020, doi: 10.1109/TMI.2019.2923601.

M. K. N. R. A. Aenney, G. Bishwabidyalay, M. A. Rahman, “Detection of Lung Nodules using Image Processing Techniques,” 2019.

R. Gasparri et al., “Detection of Lung cancer using Digital image Processing techniques and Artificial Neural Networks,” J. Phys. Conf. Ser., vol. 2327, no. 1, p. 012078, Aug. 2022, doi: 10.1088/1742-6596/2327/1/012078.

Tasmim et al., “A Lightweight-CNN Model for Efficient Lung Cancer Detection and Grad-CAM Visualization,” pp. 254–258, Nov. 2023, doi: 10.1109/ICICT4SD59951.2023.10303569.

A. K. Swain, A. Swetapadma, J. K. Rout, and B. K. Balabantaray, “Classification of NSCLC types using sparse deep neural network features,” Biomed. Signal Process. Control, vol. 87, p. 105485, Jan. 2024, doi: 10.1016/J.BSPC.2023.105485.

V. Kapoor, A. Mittal, S. Garg, M. Diwakar, A. K. Mishra, and P. Singh, “Lung Cancer Detection Using VGG16 and CNN,” Proc. - 2023 IEEE World Conf. Appl. Intell. Comput. AIC 2023, pp. 758–762, 2023, doi: 10.1109/AIC57670.2023.10263901.

P. M. Bruntha, S. I. A. Pandian, J. Anitha, S. S. Abraham, and S. N. Kumar, “A novel hybridized feature extraction approach for lung nodule classification based on transfer learning technique,” J. Med. Phys., vol. 47, no. 1, pp. 1–9, Jan. 2022, doi: 10.4103/JMP.JMP_61_21.

Q. Zhang, H. Wang, S. W. Yoon, D. Won, and K. Srihari, “Lung Nodule Diagnosis on 3D Computed Tomography Images Using Deep Convolutional Neural Networks,” Procedia Manuf., vol. 39, pp. 363–370, Jan. 2019, doi: 10.1016/J.PROMFG.2020.01.375.

K. Clark et al., “The cancer imaging archive (TCIA): Maintaining and operating a public information repository,” J. Digit. Imaging, vol. 26, no. 6, pp. 1045–1057, Dec. 2013, doi: 10.1007/S10278-013-9622-7/METRICS.

“An Efficient Approach Towards Delineation of Lungs and Pulmonary Nodule Detection | Request PDF.” Accessed: Dec. 18, 2023. [Online]. Available: https://www.researchgate.net/publication/348447874_An_Efficient_Approach_Towards_Delineation_of_Lungs_and_Pulmonary_Nodule_Detection

“Lung Cancer Detection of CT Lung Images.” Accessed: Dec. 18, 2023. [Online]. Available: https://www.researchgate.net/publication/333666243_Lung_Cancer_Detection_of_CT_Lung_Images

“Lung Cancer Detection Based on CT Scan Images by Using Deep Transfer Learning | IIETA.” Accessed: Dec. 18, 2023. [Online]. Available: https://www.iieta.org/journals/ts/paper/10.18280/ts.360406

T. Hachaj and M. Piekarczyk, “High-Level Hessian-Based Image Processing with the Frangi Neuron,” Electron. 2023, Vol. 12, Page 4159, vol. 12, no. 19, p. 4159, Oct. 2023, doi: 10.3390/ELECTRONICS12194159.

M. Alamgeer et al., “Deep Learning Enabled Computer Aided Diagnosis Model for Lung Cancer using Biomedical CT Images,” Comput. Mater. Contin., vol. 73, no. 1, pp. 1437–1448, May 2022, doi: 10.32604/CMC.2022.027896.

M. Sharma, J. Bhatt, M. Joshi Manu Sharma, J. S. Bhatt, and M. V Joshi, “Early detection of lung cancer from CT images: nodule segmentation and classification using deep learning,” https://doi.org/10.1117/12.2309530, vol. 10696, no. 13, pp. 226–233, Apr. 2018, doi: 10.1117/12.2309530.

M. Jasmine Pemeena Priyadarsini et al., “Lung Diseases Detection Using Various Deep Learning Algorithms,” J. Healthc. Eng., vol. 2023, 2023, doi: 10.1155/2023/3563696.

D. Z. Karim and T. A. Bushra, “Detecting Lung Cancer from Histopathological Images using Convolution Neural Network,” IEEE Reg. 10 Annu. Int. Conf. Proceedings/TENCON, vol. 2021-December, pp. 626–631, 2021, doi: 10.1109/TENCON54134.2021.9707242.

W. Alakwaa, M. Nassef, and A. Badr, “Lung Cancer Detection and Classification with 3D Convolutional Neural Network (3D-CNN),” Int. J. Adv. Comput. Sci. Appl., vol. 8, no. 8, pp. 66–73, 2017, doi: 10.14569/IJACSA.2017.080853.

M. Praveena, A. Ravi, T. Srikanth, B. H. Praveen, B. S. Krishna, and A. S. Mallik, “Lung Cancer Detection using Deep Learning Approach CNN,” 7th Int. Conf. Commun. Electron. Syst. ICCES 2022 - Proc., pp. 1418–1423, 2022, doi: 10.1109/ICCES54183.2022.9835794.

V. G. Biradar, P. K. Pareek, K. S. Vani, and P. Nagarathna, “Lung Cancer Detection and Classification using 2D Convolutional Neural Network,” MysuruCon 2022 - 2022 IEEE 2nd Mysore Sub Sect. Int. Conf., 2022, doi: 10.1109/MYSURUCON55714.2022.9972595.

T. T. Al-Shouka and K. M. A. Alheeti, “A Transfer Learning for Intelligent Prediction of Lung Cancer Detection,” AICCIT 2023 - Al-Sadiq Int. Conf. Commun. Inf. Technol., pp. 54–59, 2023, doi: 10.1109/AICCIT57614.2023.10217967.

P. Ardimento, L. Aversano, M. L. Bernardi, and M. Cimitile, “Deep Neural Networks Ensemble for Lung Nodule Detection on Chest CT Scans,” Proc. Int. Jt. Conf. Neural Networks, vol. 2021-July, Jul. 2021, doi: 10.1109/IJCNN52387.2021.9534176.

R. V. M. da Nóbrega, P. P. Rebouças Filho, M. B. Rodrigues, S. P. P. da Silva, C. M. J. M. Dourado Júnior, and V. H. C. de Albuquerque, “Lung nodule malignancy classification in chest computed tomography images using transfer learning and convolutional neural networks,” Neural Comput. Appl., vol. 32, no. 15, pp. 11065–11082, Aug. 2020, doi: 10.1007/S00521-018-3895-1/METRICS.

I. D. Apostolopoulos et al., “Automatic classification of solitary pulmonary nodules in PET/CT imaging employing transfer learning techniques,” Med. Biol. Eng. Comput., vol. 59, no. 6, pp. 1299–1310, Jun. 2021, doi: 10.1007/S11517-021-02378-Y/METRICS.

R. Indumathi and R. Vasuki, “Segmentation and Feature Extraction in Lung CT Images with Deep Learning Model Architecture,” SN Comput. Sci., vol. 4, no. 5, pp. 1–14, Sep. 2023, doi: 10.1007/S42979-023-01892-0/METRICS.

P. Yuvarani, S. Hemalatha, S. Kaviya Sri, and P. Madhubala, “Analysis of Lungs CT Image Using Deep Learning Techniques,” 2023 9th Int. Conf. Adv. Comput. Commun. Syst. ICACCS 2023, pp. 1347–1352, 2023, doi: 10.1109/ICACCS57279.2023.10113003.

R. V. M. Da Nóbrega, S. A. Peixoto, S. P. P. Da Silva, and P. P. R. Filho, “Lung Nodule Classification via Deep Transfer Learning in CT Lung Images,” Proc. - IEEE Symp. Comput. Med. Syst., vol. 2018-June, pp. 244–249, Jul. 2018, doi: 10.1109/CBMS.2018.00050.

G. H. K. Bosmans, “CT-PET imaging of lung cancer patients for radiotherapy,” Jan. 2007, doi: 10.26481/DIS.20071220GB.

and V. K. A. C. K. S, R. V Patil, “SEGEMENTATION AND PREDICTION FROM CT IMAGES FOR DETECTING LUNG CANCER”.

Downloads

Published

2023-12-28

How to Cite

Memon, R. J., Sammer Zai, Moazzam Jawaid, & M Ahsan. (2023). Investigating Deep Learning Methods for Detecting Lung Adenocarcinoma on the TCIA Dataset. International Journal of Innovations in Science & Technology, 5(4), 746–759. Retrieved from https://journal.50sea.com/index.php/IJIST/article/view/597