Role of Machine Learning in Livestock Health Monitoring System: A Systematic Literature Review
Keywords:
Machine Learning, IoT, Livestock Health System, Precision Livestock, Livestock Monitoring, Animal Welfare, Precision Farming, Livestock diseasesAbstract
Machine Learning (ML) can significantly enhance livestock management in various ways by providing real-time insights into animal health, behavior, and well-being. Livestock production, monitoring, and management can be revolutionized by using ML techniques. This study presents a comprehensive review of the literature regarding IoT devices used for monitoring cattle health, key characteristics of these devices, wearable technology used, sensors, and ML algorithms. In order to complete the review, a thorough examination and synthesis of the research articles published in reputable research venues between 2018 and 2023 are conducted. The findings revealed that pressure and pulse-rate sensors are the most often utilized types for recording the health status of animals experiencing health issues.
References
Q. An, S. Rahman, J. Zhou, and J. J. Kang, “A Comprehensive Review on Machine Learning in Healthcare Industry: Classification, Restrictions, Opportunities and Challenges,” Sensors, vol. 23, no. 9, May 2023, doi: 10.3390/S23094178,.
R. R. von Kaufmann and H. Fitzhugh, “The Importance of Livestock for the World’s Poor,” Perspect. World Food Agric. 2004, pp. 137–160, Sep. 2003, doi: 10.1002/9780470290187.CH9.
S. J. Wells, S. L. Ott, and A. Hillberg Seitzinger, “Key Health Issues for Dairy Cattle—New and Old,” J. Dairy Sci., vol. 81, no. 11, pp. 3029–3035, Nov. 1998, doi: 10.3168/JDS.S0022-0302(98)75867-9.
P. Shine and M. D. Murphy, “Over 20 Years of Machine Learning Applications on Dairy Farms: A Comprehensive Mapping Study,” Sensors 2022, Vol. 22, Page 52, vol. 22, no. 1, p. 52, Dec. 2021, doi: 10.3390/S22010052.
K. Zhao, J. M. Bewley, D. He, and X. Jin, “Automatic lameness detection in dairy cattle based on leg swing analysis with an image processing technique,” Comput. Electron. Agric., vol. 148, pp. 226–236, May 2018, doi: 10.1016/J.COMPAG.2018.03.014.
M. Sadeghi, A. Banakar, S. Minaei, M. Orooji, A. Shoushtari, and G. Li, “Early Detection of Avian Diseases Based on Thermography and Artificial Intelligence,” Animals, vol. 13, no. 14, Jul. 2023, doi: 10.3390/ANI13142348,.
N. H. Sheham, M. T. Hassan, A. Imran, T. F. Ahmed, M. S. Parvez, and A. Ahmed, “Design of an IoT-based Smart Farming System,” ACM Int. Conf. Proceeding Ser., pp. 284–293, Mar. 2022, doi: 10.1145/3542954.3542996/SUPPL_FILE/P284-SHEHAM-SUPPLEMENT.PPTX.
S. Vyas, V. Shukla, and N. Doshi, “FMD and Mastitis Disease Detection in Cows Using Internet of Things (IOT),” Procedia Comput. Sci., vol. 160, pp. 728–733, Jan. 2019, doi: 10.1016/J.PROCS.2019.11.019.
A. A. Chaudhry, R. Mumtaz, S. M. Hassan Zaidi, M. A. Tahir, and S. H. Muzammil School, “Internet of Things (IoT) and Machine Learning (ML) enabled Livestock Monitoring,” HONET 2020 - IEEE 17th Int. Conf. Smart Communities Improv. Qual. Life using ICT, IoT AI, pp. 151–155, Dec. 2020, doi: 10.1109/HONET50430.2020.9322666.
K. Dineva and T. Atanasova, “Health Status Classification for Cows Using Machine Learning and Data Management on AWS Cloud,” Anim. 2023, Vol. 13, Page 3254, vol. 13, no. 20, p. 3254, Oct. 2023, doi: 10.3390/ANI13203254.
J. K. Gwaka et al., “Machine-Learning Approach for Risk Estimation and Risk Prediction of the Effect of Climate on Bovine Respiratory Disease,” Math. 2023, Vol. 11, Page 1354, vol. 11, no. 6, p. 1354, Mar. 2023, doi: 10.3390/MATH11061354.
M. Taneja, J. Byabazaire, N. Jalodia, A. Davy, C. Olariu, and P. Malone, “Machine learning based fog computing assisted data-driven approach for early lameness detection in dairy cattle,” Comput. Electron. Agric., vol. 171, p. 105286, Apr. 2020, doi: 10.1016/J.COMPAG.2020.105286.
J. Haladjian, J. Haug, S. Nüske, and B. Bruegge, “A Wearable Sensor System for Lameness Detection in Dairy Cattle,” Multimodal Technol. Interact. 2018, Vol. 2, Page 27, vol. 2, no. 2, p. 27, May 2018, doi: 10.3390/MTI2020027.
P. Balasso, C. Taccioli, L. Serva, L. Magrin, I. Andrighetto, and G. Marchesini, “Uncovering Patterns in Dairy Cow Behaviour: A Deep Learning Approach with Tri-Axial Accelerometer Data,” Anim. 2023, Vol. 13, Page 1886, vol. 13, no. 11, p. 1886, Jun. 2023, doi: 10.3390/ANI13111886.
Y. Rao, M. Jiang, W. Wang, W. Zhang, and R. Wang, “On-farm welfare monitoring system for goats based on Internet of Things and machine learning,” Int. J. Distrib. Sens. Networks, vol. 16, no. 7, Jul. 2020, doi: 10.1177/1550147720944030/ASSET/F6D9C9F7-8E12-42B2-91F6-C9B63C1A7E16/ASSETS/IMAGES/LARGE/10.1177_1550147720944030-FIG12.JPG.
S. Mishra, “Internet of things enabled deep learning methods using unmanned aerial vehicles enabled integrated farm management,” Heliyon, vol. 9, no. 8, p. e18659, Aug. 2023, doi: 10.1016/J.HELIYON.2023.E18659.
M. van der Voort, D. Jensen, C. Kamphuis, I. N. Athanasiadis, A. De Vries, and H. Hogeveen, “Invited review: Toward a common language in data-driven mastitis detection research,” J. Dairy Sci., vol. 104, no. 10, pp. 10449–10461, Oct. 2021, doi: 10.3168/JDS.2021-20311.
P. Niloofar, S. Lazarova-Molnar, D. P. Francis, A. Vulpe, G. Suciu, and M. Balanescu, “Modeling and Simulation for Decision Support in Precision Livestock Farming,” Proc. - Winter Simul. Conf., vol. 2020-December, pp. 2601–2612, Dec. 2020, doi: 10.1109/WSC48552.2020.9383975.
D. Burruss et al., “Predicting the Geographic Range of an Invasive Livestock Disease across the Contiguous USA under Current and Future Climate Conditions,” Clim. 2021, Vol. 9, Page 159, vol. 9, no. 11, p. 159, Oct. 2021, doi: 10.3390/CLI9110159.
A. Puig, M. Ruiz, M. Bassols, L. Fraile, and R. Armengol, “Technological Tools for the Early Detection of Bovine Respiratory Disease in Farms,” Anim. 2022, Vol. 12, Page 2623, vol. 12, no. 19, p. 2623, Sep. 2022, doi: 10.3390/ANI12192623.
N. A. Ghafoor and B. Sitkowska, “MasPA: A Machine Learning Application to Predict Risk of Mastitis in Cattle from AMS Sensor Data,” AgriEngineering, vol. 3, no. 3, pp. 575–583, Sep. 2021, doi: 10.3390/AGRIENGINEERING3030037/S1.
NIRERE Gaudence; Kayalvizhi Jayavel; MASABO Emmanuel, “Fuzzy Logic Applied to Smart Cow’s Wearable Device for Early Detection of Foot and Mouth Disease in Rwanda,” Int. J. Innov. Sci. Res. Technol., vol. 7, no. 6, 2022, [Online]. Available: https://ijisrt.com/fuzzy-logic-applied-to-smart-cows-wearable-device-for-early-detection-of-foot-and-mouth-disease-in-rwanda
R. M. Hyde et al., “Automated prediction of mastitis infection patterns in dairy herds using machine learning,” Sci. Rep., vol. 10, no. 1, pp. 1–8, Dec. 2020, doi: 10.1038/S41598-020-61126-8;SUBJMETA=114,308,631,692,699;KWRD=COMPUTATIONAL+BIOLOGY+AND+BIOINFORMATICS,DISEASES,MEDICAL+RESEARCH.
P. Niloofar et al., “Data-driven decision support in livestock farming for improved animal health, welfare and greenhouse gas emissions: Overview and challenges,” Comput. Electron. Agric., vol. 190, p. 106406, 2021.
S. Neethirajan, “The role of sensors, big data and machine learning in modern animal farming,” Sens. Bio-Sensing Res., vol. 29, p. 100367, Aug. 2020, doi: 10.1016/J.SBSR.2020.100367.
L. Riaboff et al., “Development of a methodological framework for a robust prediction of the main behaviours of dairy cows using a combination of machine learning algorithms on accelerometer data,” Comput. Electron. Agric., vol. 169, p. 105179, Feb. 2020, doi: 10.1016/J.COMPAG.2019.105179.
H. Wang et al., “Diagnosis of dairy cow diseases by knowledge-driven deep learning based on the text reports of illness state,” CEAgr, vol. 205, p. 107564, Feb. 2023, doi: 10.1016/J.COMPAG.2022.107564.
X. Zhou et al., “The Early Prediction of Common Disorders in Dairy Cows Monitored by Automatic Systems with Machine Learning Algorithms,” Animals, vol. 12, no. 10, May 2022, doi: 10.3390/ANI12101251,.
M. Rony, D. Barai, Riad, and M. Z. Hasan, “Cattle External Disease Classification Using Deep Learning Techniques,” 2021 12th Int. Conf. Comput. Commun. Netw. Technol. ICCCNT 2021, 2021, doi: 10.1109/ICCCNT51525.2021.9579662.
A. W. Hamilton et al., “Identification of the Rumination in Cattle Using Support Vector Machines with Motion-Sensitive Bolus Sensors,” Sensors 2019, Vol. 19, Page 1165, vol. 19, no. 5, p. 1165, Mar. 2019, doi: 10.3390/S19051165.
A. Fuentes, S. Han, M. F. Nasir, J. Park, S. Yoon, and D. S. Park, “Multiview Monitoring of Individual Cattle Behavior Based on Action Recognition in Closed Barns Using Deep Learning,” Anim. 2023, Vol. 13, Page 2020, vol. 13, no. 12, p. 2020, Jun. 2023, doi: 10.3390/ANI13122020.
“(PDF) Lameness detection and scoring.” Accessed: Jun. 05, 2025. [Online]. Available: https://www.researchgate.net/publication/350835786_Lameness_detection_and_scoring
S. R. Silva, J. P. Araujo, C. Guedes, F. Silva, M. Almeida, and J. L. Cerqueira, “Precision Technologies to Address Dairy Cattle Welfare: Focus on Lameness, Mastitis and Body Condition,” Anim. 2021, Vol. 11, Page 2253, vol. 11, no. 8, p. 2253, Jul. 2021, doi: 10.3390/ANI11082253.
M. Taghavi, H. Russello, W. Ouweltjes, C. Kamphuis, and I. Adriaens, “Cow key point detection in indoor housing conditions with a deep learning model,” J. Dairy Sci., vol. 107, no. 4, pp. 2374–2389, Apr. 2024, doi: 10.3168/JDS.2023-23680.
K. Zhang et al., “Early lameness detection in dairy cattle based on wearable gait analysis using semi-supervised LSTM-Autoencoder,” Comput. Electron. Agric., vol. 213, p. 108252, Oct. 2023, doi: 10.1016/J.COMPAG.2023.108252.
R. Arablouei, L. Wang, L. Currie, J. Yates, F. A. P. Alvarenga, and G. J. Bishop-Hurley, “Animal behavior classification via deep learning on embedded systems,” Comput. Electron. Agric., vol. 207, p. 107707, Apr. 2023, doi: 10.1016/J.COMPAG.2023.107707.
E. A. Eckelkamp and J. M. Bewley, “On-farm use of disease alerts generated by precision dairy technology,” J. Dairy Sci., vol. 103, no. 2, pp. 1566–1582, Feb. 2020, doi: 10.3168/JDS.2019-16888.
C. Carslake, J. A. Vázquez-Diosdado, and J. Kaler, “Machine Learning Algorithms to Classify and Quantify Multiple Behaviours in Dairy Calves Using a Sensor: Moving beyond Classification in Precision Livestock,” Sensors 2021, Vol. 21, Page 88, vol. 21, no. 1, p. 88, Dec. 2020, doi: 10.3390/S21010088.

Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 50sea

This work is licensed under a Creative Commons Attribution 4.0 International License.